

Performance Verification Guide

DG800 Series Function/Arbitrary Waveform Generator

Jan. 2019 RIGOL (SUZHOU) TECHNOLOGIES INC.

Guaranty and Declaration

Copyright

© 2018 **RIGOL** (SUZHOU) TECHNOLOGIES INC. All Rights Reserved.

Trademark Information

RIGOL is a registered trademark of **RIGOL** (SUZHOU) TECHNOLOGIES INC.

Publication Number

PVB11100-1110

Notices

- **RIGOL** products are covered by P.R.C. and foreign patents, issued and pending.
- **RIGOL** reserves the right to modify or change parts of or all the specifications and pricing policies at the company's sole decision.
- Information in this publication replaces all previously released materials.
- Information in this publication is subject to change without notice.
- RIGOL shall not be liable for either incidental or consequential losses in connection with the furnishing, use, or performance of this manual, as well as any information contained.
- Any part of this document is forbidden to be copied, photocopied, or rearranged without prior written approval of **RIGOL**.

Product Certification

RIGOL guarantees that this product conforms to the national and industrial standards in China as well as the ISO9001:2015 standard and the ISO14001:2015 standard. Other international standard conformance certifications are in progress.

Contact Us

If you have any problem or requirement when using our products or this manual, please contact **RIGOL**.

E-mail: service@rigol.com Website: www.rigol.com

General Safety Summary

Please review the following safety precautions carefully before putting the instrument into operation so as to avoid any personal injury or damage to the instrument and any product connected to it. To prevent potential hazards, please follow the instructions specified in this manual to use the instrument properly.

Use the BNC Output Connector Properly.

The BNC output connector on the front panel only allows to output the signal but not to input the signal.

Use Proper Power Cord.

Only the exclusive power cord designed for the instrument and authorized for use within the local country could be used.

Ground the Instrument.

The instrument is grounded through the Protective Earth lead of the power cord. To avoid electric shock, connect the earth terminal of the power cord to the Protective Earth terminal before connecting any input or output terminals.

Connect the Probe Correctly.

If a probe is used, the probe ground lead must be connected to earth ground. Do not connect the ground lead to high voltage. Improper way of connection could result in dangerous voltages being present on the connectors, controls or other surfaces of the oscilloscope and probes, which will cause potential hazards for operators.

Observe All Terminal Ratings.

To avoid fire or shock hazard, observe all ratings and markers on the instrument and check your manual for more information about ratings before connecting the instrument.

Use Proper Overvoltage Protection.

Ensure that no overvoltage (such as that caused by a bolt of lightning) can reach the product. Otherwise, the operator might be exposed to the danger of an electric shock.

Do Not Operate Without Covers.

Do not operate the instrument with covers or panels removed.

Do Not Insert Objects Into the Air Outlet.

Do not insert objects into the air outlet, as doing so may cause damage to the instrument.

Use Proper Fuse.

Please use the specified fuses.

Avoid Circuit or Wire Exposure.

Do not touch exposed junctions and components when the unit is powered on.

Do Not Operate With Suspected Failures.

If you suspect that any damage may occur to the instrument, have it inspected by **RIGOL** authorized personnel before further operations. Any maintenance, adjustment or replacement especially to circuits or accessories must be performed by **RIGOL** authorized personnel.

Provide Adequate Ventilation.

Inadequate ventilation may cause an increase of temperature in the instrument, which would cause damage to the instrument. So please keep the instrument well ventilated and inspect the air outlet and the fan regularly.

Do Not Operate in Wet Conditions.

To avoid short circuit inside the instrument or electric shock, never operate the instrument in a humid environment.

Do Not Operate in an Explosive Atmosphere.

To avoid personal injuries or damage to the instrument, never operate the instrument in an explosive atmosphere.

Keep Product Surfaces Clean and Dry.

To avoid dust or moisture from affecting the performance of the instrument, keep the surfaces of the instrument clean and dry.

Prevent Electrostatic Impact.

Operate the instrument in an electrostatic discharge protective environment to avoid damage induced by static discharges. Always ground both the internal and external conductors of cables to release static before making connections.

Use the Battery Properly.

Do not expose the battery (if available) to high temperature or fire. Keep it out of the reach of children. Improper change of a battery (lithium battery) may cause an explosion. Use the **RIGOL** specified battery only.

Handle with Caution.

Please handle with care during transportation to avoid damage to keys, knobs, interfaces, and other parts on the panels.

Document Overview

This manual is used to guide users to correctly test the performance specifications of DG800 series function/arbitrary waveform generator. The performance verification test mainly verifies whether DG800 series can work normally and is within specifications.

Main topics in this Manual:

Chapter 1 Test Overview

This chapter introduces the preparations before the performance verification test, the recommended test devices, the test result record, the test notices and the related information of the technical parameters.

Chapter 2 Performance Verification Test

This chapter introduces the test method, procedures and limits of each performance specification in details.

Appendix

The appendix provides the test results record forms and performance specifications of DG800 series function/arbitrary waveform generator.

Format Conventions in this Manual:

1. Keys:

The keys on the front panel are usually denoted by the format of "Key Name (Bold) + Text Box". For example, **Utility** denotes the Utility key.

2. Menu Labels:

The menu labels are usually denoted by the format of "Menu Word (Bold) + Character Shading". For example, **System Setting**.

3. Connectors:

The connectors on the front or rear panel are usually denoted by the format of "Connector Name (Bold) + Square Brackets (Bold)". For example, **[Counter]**.

4. Operation Procedures:

" \rightarrow " represents the next step of operation. For example, **Utility** \rightarrow **System Setting** denotes that first press **Utility** on the front panel, and then tap the **System Setting** menu label.

Content Conventions in this Manual:

DG800 series function/arbitrary waveform generator includes the following models. Unless otherwise noted in this manual, DG832 is taken as an example to illustrate the performance verification test methods of DG800 series.

Model	No. of Channels	Max. Output Frequency
DG812	2	10MHz
DG822	2	25MHz
DG832	2	35MHz
DG811	1	10MHz
DG821	1	25MHz
DG831	1	35MHz

Contents

Guaranty and Declaration	I
General Safety Summary	
Document Overview	IV
Chapter 1 Test Overview	
Test Preparations	1-1
Recommended Test Devices	1-1
Test Result Record	1-2
Test Notices	1-2
Technical Parameters	
Chapter 2 Performance Verification Test	
Frequency Accuracy Test	
Specification	
Test Procedures	
Test Record Form	
AC Amplitude Accuracy Test	
Specification	
Test Procedures	
Test Record Form	
DC Offset Accuracy Test	
Specification	
Test Procedures	
Test Record Form	
AC Flatness Test	2-8
Specification	
Test Procedures	
Test Record Form	
Harmonic Distortion Test	
Specification	
Test Procedures	2-11
Test Record Form	2-13
Spurious Signal Test	2-14
Specification	2-14
Test Procedures	2-14
Test Record Form	2-16
Rise/Fall Time Test	2-17
Specification	2-17
Test Procedures	2-17
Test Record Form	2-18
Overshoot Test	2-19
Specification	2-19
Test Procedures	2-19
Test Record Form	2-20

Appendix		. 1
	ix A: Test Result Record Form	
	ix B: Performance Specifications	

Chapter 1 Test Overview

Test Preparations

Before performing the test, make sure that the instrument is within the calibration period (the recommended calibration period is 1 year) and has been warmed up for at least 30 minutes under the specified operation temperature ($18^{\circ}C$ to $28^{\circ}C$).

Recommended Test Devices

It is recommended that you use the test devices listed in the table below or other test devices whose performance specifications satisfy the "Performance Requirement" listed in the table below to test the performance specifications of the DG800 series.

Device	Performance Requirement	Recommended Instrument
Frequency Counter >10MHz Accuracy: 0.1ppm		Agilent 53131A
Digital Multimeter	$6^{1}/_{2}$ digits	RIGOL DM3068
Power Meter	-30dBm to +20dBm Accuracy: ±0.02dB Resolution: 0.01dB	Agilent E4418B
Spectrum Analyzer	Minimum resolution bandwidth is 100Hz	RIGOL DSA815
Oscilloscope	Bandwidth: 500MHz Rise/Fall time measurement function Overshoot measurement function	RIGOL DS4000 series
Connecting Cable	BNC (m)-BNC (m)	
Connecting Cable	BNC (m)-Dual banana plug (m)	
50Ω Load	50Ω/1W	
Power Sensor	-30dBm to +20dBm	Agilent N8482A
Power Sensor Connecting Cable	Used to connect the power meter and power sensor	
Adaptor	N (f)-BNC (m)	
Adaptor	BNC (f)-N (m)	

Table 1-1 Recommended test de

Test Result Record

Record and keep the test results of each test item. The test result record forms, which provide all the test items and the corresponding performance specification limits as well as spaces for users to record the test results, are provided in "Appendix A: Test Result Record Form" of this manual.

Tip:

It is recommended that you photocopy the test result record form before each test. During the test process, record the test results on the copies so that the forms can be used repeatedly.

Test Notices

To achieve optimum test effect, all the test procedures should follow the following recommendations.

- Make sure that the environment temperature is between 18[°]C and 28[°]C and every test is performed under the specified operation temperature (18[°]C to 28[°]C).
- 2) Before performing each test, make sure that the instrument has been warmed up for at least 30 minutes.
- 3) Before performing each test, restore the instrument to factory setting.

Technical Parameters

Chapter 2 of this manual provides the corresponding specification of each test item. Besides, "**Appendix B: Performance Specifications**" provides the detailed performance specifications of DG800 series. This chapter introduces the performance verification test methods of DG800 series function/arbitrary waveform generator by taking CH1 of DG832 as an example. The test methods are also applicable to CH2.

The test items include:

- Frequency Accuracy Test
- AC Amplitude Accuracy Test
- DC Offset Accuracy Test
- AC Flatness Test
- Harmonic Distortion Test
- Spurious Signal Test
- Rise/Fall Time Test
- Overshoot Test

Frequency Accuracy Test

Specification

Frequency characteristic		
Accuracy	\pm (1 ppm ^[1] of the setting value + 10 pHz), 18°C to 28°C	
Note ^[1] : ppm denotes one part per million. For example, if the setting frequency is 1MHz and the actual output		
frequency is between 0.999 998 999 999 999 99MHz and 1.000 001 000 000 000 01MHz, the instrument is up		
to the specification requirement and the test passes.		

Test Procedures

 Make sure that the environment temperature is between 18°C and 28°C and DG800 has been warmed up for at least 30 minutes. Connect the channel output terminal (take CH1 as an example; the test method is also applicable to CH2) of DG800 with the signal input terminal of the frequency counter using a dual-BNC cable as shown in Figure 2-1.

Figure 2-1 Connect DG800 and the Frequency Counter

- 2. Turn on the frequency counter and set its output impedance to $1M\Omega$.
- 3. Turn on DG800. Press **Preset** and tap the **Def** icon, then a dialog box is displayed, tap **"Apply"** to restore DG800 to the factory setting.
- 4. Set DG800:
 - a) Set the output waveform of CH1 to a sine waveform with 1MHz frequency and 1<u>Vpp ampli</u>tude.
 - b) Press Output1 or tap the channel output configuration status bar
 to turn on the output of CH1 in the channel setting interface.
- 5. Record the reading of the frequency counter and judge whether the reading is between 0.999 998 999 999 999 99MHz and 1.000 001 000 000 000 01MHz.
- 6. Set CH1 of DG800 to output square, ramp and pulse waveforms (the frequencies are 1MHz and the amplitudes are 1Vpp) respectively. Record the readings of the frequency counter respectively and judge whether the readings are between

0.999 998 999 999 999 99MHz and 1.000 001 000 000 01MHz.

7. Repeat steps 1 to 6 to test the frequency accuracy of CH2 and record the test results.

Test Record Form

Waveform	Setting Value	Measurement Value	Specification	Pass/Fail
Sine				
Square	Frequency: 1MHz		0.999 998 999 999 999	
Ramp	Amplitude: 1Vpp		99MHz to 1.000 001 000 000 000 01MHz	
Pulse				

AC Amplitude Accuracy Test

Specification

Output Characteristic		
Amplitude (into 50Ω)		
Accuracy	Typical (1kHz Sine, 0V Offset, >10mVpp, Auto) ±(1% of setting value) ±5mV	

Test Procedures

1. Make sure that the environment temperature is between 18° C and 28° C and DG800 has been warmed up for at least 30 minutes. Connect the 50Ω load to the channel output terminal (take CH1 as an example; the test method is also applicable to CH2) of DG800; connect the 50Ω load and the voltage input terminals of the digital multimeter using a BNC-Dual banana plug connecting cable as shown in Figure 2-2.

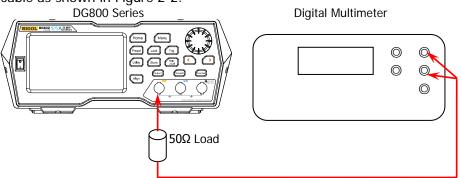


Figure 2-2 Connect DG800 and the Digital Multimeter via a 50Ω Load

- 2. Turn on the multimeter, select the ACV measurement function and set the range to "Auto".
- 3. Turn on DG800. Press **Preset** and tap the **Def** icon, then a dialog box is displayed, tap **"Apply"** to restore DG800 to the factory setting.
- 4. Set DG800:
 - a) Set the output impedance of CH1 to 50Ω. (Tap the channel output configuration status bar 1 cm Hpc under the user interface to enter the channel setting interface. Tap the OutputSet → HighZ to select "Off". Tap the Impedance menu label, and set the impedance to 50Ω.)
 - b) Set the output waveform of CH1 to a sine waveform with 1kHz frequency, 20mVpp amplitude and 0V_{dc} offset.
 - c) Press **Output1** or tap the channel output configuration status bar

to turn on the output of CH1 in the channel setting interface.

- 5. Record the reading of the multimeter and judge whether it is within the specification ("Amplitude Output Value (Vrms)" in Table 2-1) range.
- 6. Keep the output impedance of CH1 of DG800 at 50Ω and the output waveform of CH1 as a sine waveform with 1kHz frequency and 0V_{dc} offset. Set the output amplitude of CH1 to 100mVpp, 500mVpp, 1Vpp, 5Vpp and 10Vpp respectively. Record the readings of the multimeter respectively and judge whether the readings are within the specification ("Amplitude Output Value (Vrms)" in Table 2-1) range.

Amplitude Setting Value (Vpp)	Allowed Error (Vpp) ^[1]	Amplitude Output Value (Vpp)	Amplitude Output Value (Vrms) ^[2]
20mVpp	±5.2mVpp	14.8mVpp to 25.2mVpp	5.2mVrms to 8.9mVrms
100mVpp	±6mVpp	94mVpp to 106mVpp	33.2mVrms to 37.5mVrms
500mVpp	±10mVpp	490mVpp to 510mVpp	173.3mVrms to 180.3mVrms
1Vpp	±15mVpp	0.985Vpp to 1.015Vpp	348.3mVrms to 358.9mVrms
5Vpp	±55mVpp	4.945Vpp to 5.055Vpp	1.75Vrms to 1.7875Vrms
10Vpp	±105mVpp	9.895Vpp to 10.105Vpp	3.5Vrms to 3.5732Vrms

Table 2-1 Amplitude output values (Vrms) of AC amplitude accuracy test

Note^[1]: "Allowed Error" is calculated from the specification "±(1% of setting value) ±5mVpp". Note^[2]: "Amplitude Output Value (Vrms)" is calculated from "Amplitude Output Value (Vpp)".

The conversion relation between Vrms and Vpp is $Vpp = 2\sqrt{2}Vrms$.

7. Repeat steps 1 to 6 to test the AC amplitude accuracy of CH2 and record the test results.

Test Record Form

Amplitude Setting Value	Setting	Measurement Value	Specification	Pass/I	Fail
20mVpp			5.2mVrms to 8.9mVrms		
100mVpp	Frequency:		33.2mVrms to 37.5mVrms		
500mVpp	1kHz		173.3mVrms to 180.3mVrms		
1Vpp	Offset: 0V _{dc} Impedance:		348.3mVrms to 358.9mVrms		
5Vpp	50Ω		1.75Vrms to 1.7875Vrms		
10Vpp			3.5Vrms to 3.5732Vrms		

DC Offset Accuracy Test

Specification

Output Characteristic		
Offset (into 50Ω)		
Accuracy	±(1% of setting value + 5mV + 1% of amplitude)	

Test Procedures

- 1. Make sure that the environment temperature is between 18° C and 28° C and DG800 has been warmed up for at least 30 minutes. Connect the 50Ω load to the channel output terminal (take CH1 as an example; the test method is also applicable to CH2) of DG800; connect the 50Ω load and the voltage input terminals of the digital multimeter using a BNC-Dual banana plug connecting cable as shown in Figure 2-2.
- 2. Turn on the multimeter, select the DCV measurement function and set the range to "20V".
- 3. Turn on DG800. Press **Preset** and tap the **Def** icon, then a dialog box is displayed, tap **"Apply"** to restore DG800 to the factory setting.
- 4. Set DG800:
 - a) Set the output impedance of CH1 to 50Ω. (Tap the channel output configuration status bar under the user interface to enter the channel setting interface. Tap the OutputSet → HighZ to select "Off". Tap the Impedance menu label, and set the impedance to 50Ω.)
 - b) Set the output waveform of CH1 to a sine waveform with 1kHz frequency, 5Vpp amplitude and $0V_{dc}$ offset.
 - c) Press **Output1** or tap the channel output configuration status bar 1 Sec 11/22 to turn on the output of CH1 in the channel setting interface.
- 5. Record the reading of the multimeter and judge whether it is within the specification ("Offset" in Table 2-2) range.
- 6. Keep the output impedance of CH1 of DG800 at 50 Ω and the output waveform of CH1 as a sine waveform with 1kHz frequency and 5Vpp amplitude. Set the offset of the output waveform of CH1 to -2.5V_{dc}, -1V_{dc}, -500mV_{dc}, 500mV_{dc}, 1V_{dc} and 2.5V_{dc} respectively. Record the readings of the multimeter respectively and judge whether the readings are within the specification ("Offset" in Table 2-2) range.

Offset Setting Value	Amplitude Setting Value	Allowed Error ^[1]	Offset ^[2]
-2.5V _{dc}		$\pm 0.030 V_{dc}$	-2.530V_dc to -2.470V_dc
-1V _{dc}		$\pm 0.045 V_{dc}$	-1.045V $_{dc}$ to -0.955V $_{dc}$
-500mV _{dc}		±0.050V _{dc}	-0.550V_dc to -0.450V_dc
OV _{dc}	5Vpp	±0.055V _{dc}	-0.055V _{dc} to 0.055V _{dc}
500mV _{dc}		$\pm 0.060V_{dc}$	$0.440V_{dc}$ to $0.560V_{dc}$
1V _{dc}		$\pm 0.065 V_{dc}$	$0.935V_{dc}$ to $1.065V_{dc}$
2.5V _{dc}		±0.080V _{dc}	$2.420V_{dc}$ to $2.580V_{dc}$

Table 2-2 Offset limits of DC offset accuracy test

Note^[1]: "Allowed Error" is calculated from the specification "± (1% of setting value + 5 mV + 1% of amplitude)". Note^[2]: Offset = offset setting value \pm allowed error.

7. Repeat steps 1 to 6 to test the DC offset accuracy of CH2 and record the test results.

Test Record Form

Offset Setting Value	Setting	Measurement Value	Specification Pas		′Fail
-2.5V _{dc}			-2.530V _{dc} to -2.470V _{dc}		
-1V _{dc}	Frequency:		-1.045V _{dc} to -0.955V _{dc}		
-500mV _{dc}	1kHz		-0.550V _{dc} to -0.450V _{dc}		
0V _{dc}	Amplitude: 5Vpp		-0.055 V_{dc} to 0.055 V_{dc}		
500mV _{dc}	Impedance:		$0.440V_{dc}$ to $0.560V_{dc}$		
1V _{dc}	50Ω		0.935V _{dc} to 1.065V _{dc}		
2.5V _{dc}			$2.420V_{dc}$ to $2.580V_{dc}$		

AC Flatness Test

Specification

Output Characteristic	
	Typical (Sine, 1 Vpp)
	≤5 MHz: ±0.1 dB
Flatness	≤15 MHz: ±0.2 dB
	≤25 MHz: ±0.3 dB
	≤35MHz: ±0.5 dB

Test Procedures

- 1. Make sure that the environment temperature is between 18° C and 28° C and DG800 has been warmed up for at least 30 minutes. Connect the 50Ω load to the channel output terminal (take CH1 as an example; the test method is also applicable to CH2) of DG800; connect the 50Ω load and the voltage input terminals of the digital multimeter using a BNC-Dual banana plug connecting cable as shown in Figure 2-2.
- 2. Turn on DG800. Press **Preset** and tap the **Def** icon, then a dialog box is displayed, tap **"Apply"** to restore DG800 to the factory setting.
- 3. Set DG800:
 - a) Set the output impedance of CH1 to 50Ω . (Tap the channel output configuration status bar under the user interface to enter the channel setting interface. Tap the **OutputSet** \rightarrow **HighZ** to select "Off". Tap the **Impedance** menu label, and set the impedance to 50Ω .)
 - b) Set the output waveform of CH1 to a sine waveform with 1kHz frequency and 1Vpp amplitude.
 - c) Press **Output1** or tap the channel output configuration status bar to turn on the output of CH1 in the channel setting interface.
- 4. Turn on the multimeter and select the ACV measurement function. Turn on the dBm operation function and set the reference resistance to 50Ω . Read the measurement value and take it as the reference power (P_{ref}).

Tip:

In this step, if the dBm operation function is not turned on, you can also calculate the reference power using the formula

 $dBm = 10 \times Log_{10}[(V_{\text{reading}}^2 / R_{\text{ref}}) / 1mW]$ according to the measurement value of the multimeter.

Wherein, V_{reading} is the measurement value of the multimeter.

- 5. Calibrate the power meter:
 - a) Connect the power sensor to the input terminal and **[POWER REF]** terminal of the power meter respectively.
 - b) Press Zero/Cal → Zero → Cal. Turn on power reference after the calibration finishes and observe whether the measurement value of the power meter is a 0dBm, 50MHz signal.
 - c) Turn off **power reference**.
- Disconnect DG800 and the multimeter. Connect the power sensor and the channel output terminal (take CH1 as an example; the test method is also applicable to CH2) of DG800 using a BNC (f)-N (m) adaptor, as shown in Figure 2-3.

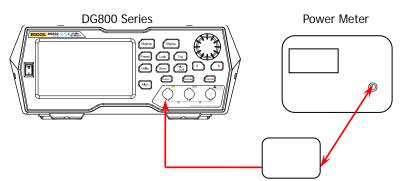


Figure 2-3 Connect DG800 and the Power Meter

- 7. Keep the output impedance of CH1 of DG800 at 50Ω . Set the output waveform of CH1 as a sine waveform with 5MHz frequency and 1Vpp amplitude. Set the frequency factor of the power meter to 5MHz, record the measurement value of the power meter and judge whether "measurement value-P_{ref}" is between -0.1dB and +0.1dB.
- 8. Keep the output impedance of CH1 of DG800 at 50Ω . Set the output waveform of CH1 as a sine waveform with 10MHz frequency and 1Vpp amplitude. Set the frequency factor of the power meter to 10MHz, record the measurement value of the power meter and judge whether "measurement value-P_{ref}" is between -0.2dB and +0.2dB.
- 9. Keep the output impedance of CH1 of DG800 at 50Ω . Set the output waveform of CH1 as a sine waveform with 15MHz frequency and 1Vpp amplitude. Set the frequency factor of the power meter to 15MHz, record the measurement value of the power meter and judge whether "measurement value-P_{ref}" is between -0.2dB and +0.2dB.

- 10. Keep the output impedance of CH1 of DG800 at 50Ω . Set the output waveform of CH1 as a sine waveform with 20MHz frequency and 1Vpp amplitude. Set the frequency factor of the power meter to 20MHz, record the measurement value of the power meter and judge whether "measurement value-P_{ref}" is between -0.3dB and +0.3dB.
- 11. Keep the output impedance of CH1 of DG800 at 50Ω . Set the output waveform of CH1 as a sine waveform with 25MHz frequency and 1Vpp amplitude. Set the frequency factor of the power meter to 25MHz, record the measurement value of the power meter and judge whether "measurement value-P_{ref}" is between -0.3dB and +0.3dB.
- 12. Keep the output impedance of CH1 of DG800 at 50Ω . Set the output waveform of CH1 as a sine waveform with 30MHz frequency and 1Vpp amplitude. Set the frequency factor of the power meter to 30MHz, record the measurement value of the power meter and judge whether "measurement value-P_{ref}" is between -0.5dB and +0.5dB.
- 13. Keep the output impedance of CH1 of DG800 at 50 Ω . Set the output waveform of CH1 as a sine waveform with 35MHz frequency and 1Vpp amplitude. Set the frequency factor of the power meter to 35MHz, record the measurement value of the power meter and judge whether "measurement value-P_{ref}" is between -0.5dB and +0.5dB.
- 14. Repeat steps 1 to 13 to test the AC flatness of CH2 and record the test results.

Frequency Setting Value	Setting	Measurement Value	Calculation Result ^[1]	Specification	Pass/Fail	
5MHz				±0.1dB		
10MHz	Amplitude: 1Vpp Impedance: 50Ω			±0.2dB		
15MHz				±0.2dB		
20MHz				±0.3dB		
25MHz				±0.3dB		
30MHz				±0.5dB		
35MHz]			±0.5dB		

Test Record Form

Note^[1]: Calculation result = Measurement value - P_{ref}.

Harmonic Distortion Test

Specification

Sine Wave Spectrum Purity				
Harmonic Distortion	Typical ^[1]			
	DC to 10 MHz (included): <-55 dBc			
	10 MHz to 20 MHz (included): <-50 dBc			
	20 MHz to 35 MHz (included): <-40 dBc			
Note ^[1] . 0 dBm output DC o	ficet 0 impedance 50.0			

': 0 dBm output, DC offset 0, impedance 50 Ω.

Test Procedures

Make sure that the environment temperature is between 18° C and 28° C and 1. DG800 has been warmed up for at least 30 minutes. Connect the channel output terminal (take CH1 as an example; the test method is also applicable to CH2) of DG800 with the signal input terminal of the spectrum analyzer using a dual-BNC connecting cable and N-BNC adaptor as shown in Figure 2-4.

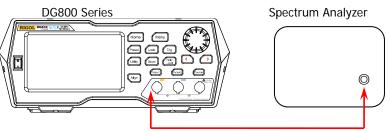


Figure 2-4 Connect DG800 and the Spectrum Analyzer

- Turn on DG800. Press **Preset** and tap the **Def** icon, then a dialog box is 2. displayed, tap "Apply" to restore DG800 to the factory setting.
- 3. Set DG800:
 - Set the output impedance of CH1 to 50Ω .((Tap the channel output a) configuration status bar under the user interface to enter the channel setting interface. Tap the **OutputSet** \rightarrow HighZ to select "Off". Tap the **Impedance** menu label, and set the impedance to 50Ω .)
 - b) Set the output waveform of CH1 to a sine waveform with 10MHz frequency, OdBm amplitude and OV_{dc} offset.
 - Press **Output1** or tap the channel output configuration status bar c) to turn on the output of CH1 in the channel setting interface.
- Turn on and set the spectrum analyzer: 4.
 - Set the reference level to 10dBm and input attenuation to 20dB. a)

- b) Set the start frequency to 5MHz and stop frequency to 30MHz.
- c) Set the resolution bandwidth to 3kHz.
- Use the marker function to make measurements and record the measurement values of the base waveform and 2nd order harmonic. Calculate^[2] the harmonic distortion and judge whether it is less than -55dBc.
- 6. Keep the output impedance of CH1 of DG800 at 50 Ω . Set the output waveform of CH1 as a sine waveform with 20MHz frequency, 0dBm amplitude and 0V_{dc} offset.
- 7. Keep the reference level, input attenuation and resolution bandwidth of the spectrum analyzer as 10dBm, 20dB and 3kHz respectively. Set its start frequency to 10MHz and stop frequency to 60MHz.
- 8. Use the marker function to make measurements and record the measurement values of the base waveform and 2nd order harmonic. Calculate^[2] the harmonic distortion and judge whether it is less than -50dBc.
- 9. Keep the output impedance of CH1 of DG800 at 50 Ω . Set the output waveform of CH1 as a sine waveform with 30MHz frequency, 0dBm amplitude and 0V_{dc} offset.
- 10. Keep the input attenuation, reference level and resolution bandwidth of the spectrum analyzer as 20dB, 10dBm and 3kHz respectively. Set its start frequency to 20MHz and stop frequency to 120MHz.
- 11. Use the marker function to make measurements and record the measurement values of the base waveform and 2nd order harmonic. Calculate^[2] the harmonic distortion and judge whether it is less than -40dBc.
- 12. Repeat steps 1 to 11 to test the harmonic distortion of CH2 and record the test results.
- Note^[2]: 2nd order harmonic distortion = 2nd order harmonic measurement value base waveform measurement value For example, when the output waveform frequency of the channel is 10MHz, if the base waveform measurement value is 0.8dBm and the 2nd order harmonic measurement value is -56.2dBm, the 2nd order harmonic distortion = (-56.2) -0.8=-57dBc<-55dBc and the test result fulfills the specification requirement.</p>

Test Record Form

Frequency Setting Value	Setting	Measurement Value	Calculation Result ^[3]	Specification	Pass/I	Fail
10MHz	Waveform: Sine Amplitude: 0dBm Offset: 0V _{dc}	Base waveform: 2 nd order harmonic:		<-55dBc		
20MHz		Base waveform: 2 nd order harmonic:		<-50dBc		
30MHz		Base waveform: 2 nd order harmonic:		<-40dBc		

Note^[3]: Calculation result = 2th order harmonic measurement value - base waveform measurement value.

Spurious Signal Test

Specification

Sine Wave Spectrum Purity				
Spurious signal (non-harmonic)	Typical ^[1] ≤10 MHz: <-60 dBc >10 MHz: <-60 dBc + 6 dB/octave ^[2]			
	freet 0 immediance FO 0			

Note^[1]: 0 dBm output, DC offset 0, impedance 50 Ω .

Note^[1]: 6 dBc/octave means that when the frequency doubles, the specification increases by 6 dBc. For example, when the output frequency of DG800 is 10MHz, the specification is <-60dBc and when the output frequency is 30MHz, the specification is <-60dBc+2×6dBc, namely <-48dBc.

Test Procedures

- Make sure that the environment temperature is between 18°C and 28°C and DG800 has been warmed up for at least 30 minutes. Connect the channel output terminal (take CH1 as an example; the test method is also applicable to CH2) of DG800 with the RF input terminal of the spectrum analyzer using a dual-BNC cable and N-BNC adaptor as shown in Figure 2-4.
- 2. Turn on DG800. Press **Preset** and tap the **Def** icon, then a dialog box is displayed, tap **"Apply"** to restore DG800 to the factory setting.
- 3. Set DG800:
 - a) Set the output impedance of CH1 to 50Ω . (Tap the channel output configuration status bar under the user interface to enter the channel setting interface. Tap the **OutputSet** \rightarrow **HighZ** to select "Off". Tap the **Impedance** menu label, and set the impedance to 50Ω .)
 - b) Set the output waveform of CH1 to a sine waveform with 5MHz frequency, OdBm amplitude and OV_{dc} offset.
 - d) Press **Output1** or tap the channel output configuration status bar
 to turn on the output of CH1 in the channel setting interface.
- 4. Turn on and set the spectrum analyzer:
 - a) Set the reference level to 10dBm and input attenuation to 20dB.
 - b) Set the start frequency to 0Hz and stop frequency to 30MHz.
 - c) Set the resolution bandwidth to 1kHz.
 - d) Set the peak offset to 3dB.
 - e) Set the sweep mode to single.
- After the spectrum analyzer finishes a sweep, use Peak and the marker function to measure the maximum spurious signal (except harmonics) and record the measurement result as A. Calculate the non-harmonic spurious signal

(A-0dBm) and judge whether it is within the specification range.

- 6. Keep the output impedance of CH1 of DG800 at 50 Ω . Set the output waveform of CH1 as a sine waveform with 10MHz frequency, 0dBm amplitude and 0V_{dc} offset.
- 7. Keep the reference level, input attenuation, resolution bandwidth, peak offset and sweep mode of the spectrum analyzer as 10dBm, 20dB, 1kHz, 3dB and single respectively. Set its start frequency to 0Hz and stop frequency to 50MHz.
- 8. Press **Sweep/Trig** \rightarrow **Single** to perform a sweep.
- After the spectrum analyzer finishes a sweep, use Peak and the marker function to measure the maximum spurious signal (except harmonics) and record the measurement result as A. Calculate the non-harmonic spurious signal (A-0dBm) and judge whether it is within the specification range.
- 10. Keep the output impedance of CH1 of DG800 at 50 Ω . Set the output waveform of CH1 as a sine waveform with 20MHz frequency, 0dBm amplitude and 0V_{dc} offset.
- 11. Keep the reference level, input attenuation, resolution bandwidth, peak offset and sweep mode of the spectrum analyzer as 10dBm, 20dB, 1kHz, 3dB and single respectively. Set its start frequency to 0Hz and stop frequency to 100MHz.
- 12. Repeat steps 8 and 9.
- 13. Keep the output impedance of CH1 of DG800 at 50 Ω . Set the output waveform of CH1 as a sine waveform with 30MHz frequency, 0dBm amplitude and 0V_{dc} offset.
- 14. Keep the reference level, input attenuation, resolution bandwidth, peak offset and sweep mode of the spectrum analyzer as 10dBm, 20dB, 1kHz, 3dB and single respectively. Set its start frequency to 0Hz and stop frequency to 150MHz.
- 15. Repeat steps 8 and 9.
- 16. Repeat steps 1 to 15 to test the spurious signal (non-harmonic) of CH2 and record the test results.

Test Record Form

Output Frequency	Start Frequency	Stop Frequency	Α	A-0dBm	Specification	Pass/Fail	
5MHz	0Hz	30MHz			<-60dBc		
10MHz	0Hz	50MHz			<-60dBc		
20MHz	0Hz	100MHz			<-54dBc		
30MHz	0Hz	150MHz			<-48dBc		

Rise/Fall Time Test

Specification

Signal Characteristic	
Square	
Rise/Fall Time	Typical (1 Vpp, 1 kHz) ≤9 ns

Test Procedures

 Make sure that the environment temperature is between 18°C and 28°C and DG800 has been warmed up for at least 30 minutes. Connect the channel output terminal (take CH1 as an example; the test method is also applicable to CH2) of DG800 with the signal input terminal of the oscilloscope using a dual-BNC connecting cable as shown in Figure 2-5.

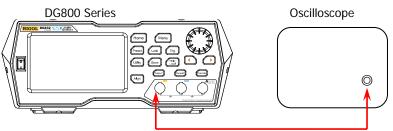


Figure 2-5 Connect DG800 and the Oscilloscope

- 2. Turn on DG800. Press **Preset** and tap the **Def** icon, then a dialog box is displayed, tap **"Apply"** to restore DG800 to the factory setting.
- 3. Set DG800:
 - a) Set the output impedance of CH1 to 50Ω . (Tap the channel output configuration status bar under the user interface to enter the channel setting interface. Tap the **OutputSet** \rightarrow **HighZ** to select "Off". Tap the **Impedance** menu label, and set the impedance to 50Ω .)
 - b) Set the output waveform of CH1 to a square waveform with 1kHz frequency, 1Vpp amplitude and $0V_{dc}$ offset.
 - c) Press **Output1** or tap the channel output configuration status bar to turn on the output of CH1 in the channel setting interface.
- 4. Turn on and set the oscilloscope:
 - a) Set the vertical scale to 200mV/div.
 - b) Set the horizontal time base to 1us.

- c) Adjust the trigger level to a proper value.
- d) Set the input impedance to 50Ω .
- e) Turn on the rise time and fall time measurement functions.
- 5. Set the edge type of the oscilloscope to rising edge, record the measurement result of the rise time and judge whether it is within the specification range.
- 6. Set the edge type of the oscilloscope to falling edge, record the measurement result of the fall time and judge whether it is within the specification range.
- 7. Repeat steps 1 to 6 to test the rise/fall time of CH2 and record the measurement results.

Test Record Form

Waveform	Setting	Measurement Value		Measurement Value Specification		Pass	/Fail
Square Amplitude	Frequency: 1kHz	Rise Time		Typical (1 Vpp, 1			
	Offset: 0V _{dc}	Fall Time		kHz) ≤9 ns			

Overshoot Test

Specification

Signal Characteristic				
Square	Square			
Overshoot	Typical (100kHz, 1Vpp) ≤5%			

Test Procedures

- Make sure that the environment temperature is between 18°C and 28°C and DG800 has been warmed up for at least 30 minutes. Connect the channel output terminal (take CH1 as an example; the test method is also applicable to CH2) of DG800 with the signal input terminal of the oscilloscope using a dual-BNC connecting cable as shown in Figure 2-5.
- 2. Turn on DG800. Press **Preset** and tap the **Def** icon, then a dialog box is displayed, tap **"Apply"** to restore DG800 to the factory setting.
- 3. Set DG800:
 - a) Set the output impedance of CH1 to 50Ω . (Tap the channel output configuration status bar under the user interface to enter the channel setting interface. Tap the **OutputSet** \rightarrow **HighZ** to select "Off". Tap the **Impedance** menu label, and set the impedance to 50Ω .)
 - b) Set the output waveform of CH1 to a square waveform with 100kHz frequency, 1Vpp amplitude and $0V_{dc}$ offset.
 - c) Press **Output1** or tap the channel output configuration status bar to turn on the output of CH1 in the channel setting interface.
- 4. Turn on and set the oscilloscope:
 - a) Set the input impedance to 50Ω .
 - b) Set the vertical scale to 200mV/div.
 - c) Set the horizontal time base to 50ns.
 - d) Adjust the trigger level to a proper value.
 - e) Turn on the overshoot measurement function.
- 5. Record the overshoot measurement value and judge whether it is within the specification range.
- 6. Repeat steps 1 to 5 to test the overshoot of CH2 and record the measurement result.

Test Record Form

Waveform	Setting	Measurement Value	Specification	Pass/Fail
Square	Frequency: 100kHz Amplitude: 1Vpp Offset: 0V _{dc}		Typical (100kHz, 1Vpp) ≤5%	

Appendix

Appendix A: Test Result Record Form

RIGOL DG800 Series Function/Arbitrary Waveform Generator Performance Verification Test Record Form

Model: _____ Tested by: _____ Test Date: _____

Channel: CH1

Frequency Accuracy Test

Waveform	Setting Value	Measurement Value	Specification Pas		'Fail
Sine					
Square	Frequency: 1MHz		0.999 998 999 999 999		
Ramp	Amplitude: 1Vpp		99MHz to 1.000 001 000 000 000 01MHz		
Pulse					

AC Amplitude Accuracy Test

Amplitude Setting Value	Setting	Measurement Value	Specification	Pass	/Fail
20mVpp			5.2mVrms to 8.9mVrms		
100mVpp	Frequency:		33.2mVrms to 37.5mVrms		
500mVpp	1kHz		173.3mVrms to 180.3mVrms		
1Vpp	Offset: 0V _{dc} Impedance:		348.3mVrms to 358.9mVrms		
5Vpp	50Ω		1.75Vrms to 1.7875Vrms		
10Vpp			3.5Vrms to 3.5732Vrms		

DC Offset Accuracy Test

Offset Setting Value	Setting	Measurement Value	Specification P		'Fail
-2.5V _{dc}			-2.530V _{dc} to -2.470V _{dc}		
-1V _{dc}	Frequency:		-1.045V _{dc} to -0.955V _{dc}		
-500mV _{dc}	1kHz		-0.550V _{dc} to -0.450V _{dc}		
0V _{dc}	Amplitude: 5Vpp		-0.055 V_{dc} to 0.055 V_{dc}		
500mV _{dc}	Impedance:		$0.440V_{dc}$ to $0.560V_{dc}$		
1V _{dc}	50Ω		$0.935V_{dc}$ to $1.065V_{dc}$		
2.5V _{dc}			$2.420V_{dc}$ to $2.580V_{dc}$		

AC Flatness Test

Frequency Setting Value	Setting	Measurement Value	Calculation Result ^[1]	Specification	Pass/	Fail
5MHz				±0.1dB		
10MHz				±0.2dB		
15MHz ^[2]	Amplitude:			±0.2dB		
20MHz ^[2]	1Vpp			±0.3dB		
25MHz ^[2]	Impedance: 50Ω			±0.3dB		
30MHz ^[3]				±0.5dB		
35MHz ^[3]				±0.5dB		

Note^[1]: Calculation result = Measurement value - P_{ref}. Note^[2]: Only applicable to DG822, DG821, DG832 and DG831. Note^[3]: Only applicable to DG832 and DG831.

Harmonic Distortion Test

Frequency Setting Value	Setting	Measurement Value	Calculation Result ^[1]	Specification	Pass/F	ail
10MHz	Waveform:	Base waveform: 2 nd order harmonic:		<-55dBc		
20MHz ^[2]	Sine Amplitude: 0dBm	Base waveform: 2 nd order harmonic:		<-50dBc		
30MHz ^[3]	Offset: 0V _{dc}	Base waveform: 2 nd order harmonic:		<-40dBc		

Note^[1]: Calculation result = 2th order harmonic measurement value - base waveform measurement value. Note^[2]: Only applicable to DG822, DG821, DG832 and DG831. Note^[3]: Only applicable to DG832 and DG831.

Spurious Signal Test

Output Frequency	Start Frequency	Stop Frequency	А	A-0dBm	Specification	Pass/	Fail
5MHz	0Hz	30MHz			<-60dBc		
10MHz	0Hz	50MHz			<-60dBc		
20MHz ^[1]	0Hz	100MHz			<-54dBc		
30MHz ^[2]	0Hz	150MHz			<-48dBc		

Note^[1]: Only applicable to DG822, DG821, DG832 and DG831. Note^[2]: Only applicable to DG832 and DG831.

Rise/Fall Time Test

Waveform	Setting	Measurement Value		Specification	Pass	/Fail
Frequency: 1kHz	Rise Time		Typical (1 Vpp, 1			
Square	Amplitude: 1Vpp Offset: 0V _{dc}	Fall Time		kHz) ≤9 ns		

Overshoot Test

Waveform	Setting	Measurement Value	Specification	Pass/Fail
Square	Frequency: 100kHz Amplitude: 1Vpp Offset: 0V _{dc}		Typical (100kHz, 1Vpp) ≤5%	

Channel: CH2

Frequency Accuracy Test

Waveform	Setting Value	Measurement Value	Specification	Pass/Fail
Sine				
Square	Frequency: 1MHz		0.999 998 999 999 999	
Ramp	Amplitude: 1Vpp		99MHz to 1.000 001 000 000 000 01MHz	
Pulse				

AC Amplitude Accuracy Test

Amplitude Setting Value	Setting	Measurement Value	Specification	Pass/Fail
20mVpp			5.2mVrms to 8.9mVrms	
100mVpp	Frequency:		33.2mVrms to 37.5mVrms	
500mVpp	1kHz		173.3mVrms to 180.3mVrms	
1Vpp	Offset: 0V _{dc} Impedance:		348.3mVrms to 358.9mVrms	
5Vpp	50Ω		1.75Vrms to 1.7875Vrms	
10Vpp			3.5Vrms to 3.5732Vrms	

DC Offset Accuracy Test

Offset Setting Value	Setting	Measurement Value	Specification	Pass	/Fail
-2.5V _{dc}			-2.530V _{dc} to -2.470V _{dc}		
-1V _{dc}	Frequency:		-1.045V _{dc} to -0.955V _{dc}		
-500mV _{dc}	1kHz		-0.550V _{dc} to -0.450V _{dc}		
0V _{dc}	Amplitude: 5Vpp		-0.055V _{dc} to 0.055V _{dc}		
500mV _{dc}	Impedance:		$0.440V_{dc}$ to $0.560V_{dc}$		
1V _{dc}	50Ω		$0.935V_{dc}$ to $1.065V_{dc}$		
2.5V _{dc}			$2.420V_{dc}$ to $2.580V_{dc}$		

AC Flatness Test

Frequency Setting Value	Setting	Measurement Value	Calculation Result ^[1]	Specification	Pass/	Fail
5MHz				±0.1dB		
10MHz				±0.2dB		
15MHz ^[2]	Amplitude:			±0.2dB		
20MHz ^[2]	1Vpp			±0.3dB		
25MHz ^[2]	Impedance: 50Ω			±0.3dB		
30MHz ^[3]				±0.5dB		
35MHz ^[3]				±0.5dB		

Note^[1]: Calculation result = Measurement value - P_{ref}. Note^[2]: Only applicable to DG822, DG821, DG832 and DG831. Note^[3]: Only applicable to DG832 and DG831.

Harmonic Distortion Test

Frequency Setting Value	Setting	Measurement Value	Calculation Result ^[1]	Specification	Pass/F	Fail
10MHz		Base waveform: 2 nd order		<-55dBc		
[2]	Waveform: Sine	harmonic: Base waveform:				
20MHz ^[2]	Amplitude: 0dBm Offset: 0V _{dc}	2 nd order harmonic:		<-50dBc		
30MHz ^[3]		Base waveform: 2 nd order harmonic:		<-40dBc		

 Note^[1]: Calculation result = 2th order harmonic measurement value - base waveform measurement value.

 Note^[2]: Only applicable to DG822, DG821, DG832 and DG831.

 Note^[3]: Only applicable to DG832 and DG831.

Spurious Signal Test

Output Frequency	Start Frequency	Stop Frequency	А	A-0dBm	Specification	Pass/	Fail
5MHz	0Hz	30MHz			<-60dBc		
10MHz	0Hz	50MHz			<-60dBc		
20MHz ^[1]	0Hz	100MHz			<-54dBc		
30MHz ^[2]	0Hz	150MHz			<-48dBc		

Note^[1]: Only applicable to DG822, DG821, DG832 and DG831. Note^[2]: Only applicable to DG832 and DG831.

Rise/Fall Time Test

Waveform	Setting	Measuremen	t Value	Specification	Pass	/Fail
Causana	Frequency: 1kHz	Rise Time		Typical (1 Vpp,		
Square	Amplitude: 1Vpp Offset: 0V _{dc}	Fall Time		1 kHz) ≤9 ns		

Overshoot Test

Waveform	Setting	Measurement Value	Specification	Pass/Fail
Square	Frequency: 100kHz Amplitude: 1Vpp Offset: 0V _{dc}		Typical (100kHz, 1Vpp) ≤5%	

Appendix B: Performance Specifications

Unless otherwise specified, all the specifications can be guaranteed when the following two conditions are met.

- The signal generator is within the calibration period.
- The signal generator has been running ceaselessly for over 30 minutes under the specified operating temperature (23°C±5°C).

All the specifications are guaranteed except the parameters marked with "Typical".

Model	DG812	DG811	DG822	DG821	DG832	DG831	
Channel	2	1	2	1	2	1	
Max. Frequency	10 MHz		25 MHz		35 MHz		
Sample Rate	125 MSa/s		•		•		
Waveform							
Basic Waveforms	Sine, Squa	re, Ramp, Pu	ulse, Noise, E	DC, Dual-tone			
Advanced		32, Sequenc					
Waveforms							
Built-in Arbitrary				Sinc, Exponen ⁻	tial Rise, Expo	onential	
Waveforms	Fall, ECG,	Gauss, Have	rSine, Lorent	z, etc.			
Frequency Chara			1		1		
Sine	1 µHz to 1		1 µHz to 2		1 µHz to 35		
Square	1 µHz to 5 MHz		1 µHz to 10		1 µHz to 10 MHz		
Ramp		1 µHz to 200 kHz		1 µHz to 500 kHz		1 µHz to 1 MHz	
Pulse	1 µHz to 5 MHz		1 µHz to 10		1 µHz to 10 MHz		
Harmonic	1 µHz to 5 MHz		1 µHz to 10		1 µHz to 15		
PRBS	2 kbps to		2 kbps to 2		2 kbps to 3		
Dual-tone		1 µHz to 10 MHz 1 µHz to 20 MHz			1 µHz to 20		
RS232	baud rate 230400	baud rate range: 9600, 14400, 19200, 38400, 57600, 115200, 128000, 230400					
Sequence		2 k to 30 MSa/s					
Noise (-3 dB)	100 MHz bandwidth						
Arbitrary Waveform	1 µHz to 5	MHz	1 µHz to 10) MHz	1 µHz to 10	MHz	
Resolution	1 μHz						
Accuracy	±(1 ppm c	±(1 ppm of the setting value + 10 pHz), 18°C to 28°C					
0: 14/ 0	D !!						
Sine Wave Spect							
Hormonic	Typical ^[1]						
Harmonic Distortion	DC to 10 MHz (included): <-55 dBc						
DISTOLIOU	10 MHz to 20 MHz (included): <-50 dBc 20 MHz to 35 MHz (included): <-40 dBc						
Total Harmonic		(10 Hz to 20					
Distortion ^[1]		(
Spurious	Typical ^[1]						
(non-harmonic)	≤10 MHz:						
· · ·			6 dB/octave				
Phase Noise	Typical (0	dBm, 10 kHz	conset)				

Typical (1 Vpp, 1 kHz) ≤5%Jitter (rms)Typical (1 Vpp)S MHz: 2 ppm of the period + 200 psArbitrary Waveform SequenceWaveform Length2 Mpts (optional 8 Mpts)Vertical Resolution16 bitsSample RateInterpolation filter: 10 Sa/s to 30 MSa/sSample RateStep filter: 2k Sa/s to 30 MSa/sMin Rise/Fall TimeStep filter: 2k Sa/s to 30 MSa/sJitter (rms)Typical (1 Vpp)Jitter (rms)Typical (1 Vpp)Jitter (rms)Step filter: 25 psOvershootTypical (1 Vpp)Litter (rms)Typical (1 Vpp)Step filter: <5 psOvershootTypical (1 Vpp)≤5%Harmonic OutputHarmonic Order≤8Harmonic TypeEven Harmonic, Odd Harmonic, Order Harmonic, UserHarmonic PhaseThe phase of each order of the harmonic can be set.Output CharacteristicsAmplitude (into 50 Ω) ≤ 10 MHz: 1.0 mVpp to 10 Vpp		10 MHz: <-105 dBc/Hz		
Square Rise/Fall Time Typical (1 Vpp, 1 kHz) \$\$9 ns Overshoot Typical (100 kHz, 1 Vpp) \$\$5% Duty 0.01% to 99.99% (limited by the current frequency setting) Non-symmetry 1% of the period + 4 ns Typical (1 Vpp) \$5 MHz: 2 ppm of the period + 200 ps >5 MHz: 2 00 ps Ramp Linearity \$1% of peak output (typical, 1 kHz, 1 VPP, 100% symmetry) Symmetry 0% to 100% Pulse 16 ns to 1000 ks (limited by the current frequency setting) Duty 0.001% to 99.999% (limited by the current frequency setting) Overshoot Typical (1 Vpp, 1 kHz) Symmetry 0% to 100% Pulse 16 ns to 1000 ks (limited by the current frequency setting) Duty 0.001% to 99.999% (limited by the current frequency setting) Overshoot Typical (1 Vpp) s5 MHz: 2 02 ps Typical (1 Vpp) Jitter (rms) \$5 MHz: 2 02 ps Arbitrary Waveform Sequence Waveform Length Waveform Length 2 Mpts (optional 8 Mpts) Vertical Resolution 16 bits Interpolation filter: 10				
Rise/Fall TimeTypical (1 Vpp, 1 kHz) ≤ 9 nsOvershootTypical (100 kHz, 1 Vpp) $\leq 5\%$ Duty0.01% to 99.99% (limited by the current frequency setting)Non-symmetry1% of the period + 4 nsTypical (1 Vpp) ≥ 5 MHz: 2 ppm of the period + 200 psRampLinearityLinearity21% of peak output (typical, 1 kHz, 1 VPP, 100% symmetry)Symmetry0% to 100%Pulse16 ns to 1000 ks (limited by the current frequency setting)Duty0.001% to 99.999% (limited by the current frequency setting)Duty0.001% to 99.999% (limited by the current frequency setting)Rising/Falling Edge28 ns (limited by the current frequency setting)Overshoot $\leq 5\%$ Typical (1 Vpp, 1 kHz)Softharz 200 psArbitrary Waveform SequenceWaveform Length2 Mpts (optional 8 Mpts)Vertical Resolution16 bitsInterpolation filter: 20 psSample RateStep filter: 3.0/sample rateSmooth filter: < 5 ps		stics		
Rise/rail Time ≤ 9 nsOvershootTypical (100 kHz, 1 Vpp) $\leq 5\%$ Duty0.01% to 99.99% (limited by the current frequency setting)Non-symmetry1% of the period + 4 nsTypical (1 Vpp)Jitter (rms) ≤ 5 MHz: 2 ppm of the period + 200 ps> 5 MHz: 200 psRampLinearity $\leq 19\%$ of peak output (typical, 1 kHz, 1 VPP, 100% symmetry)Symmetry0% to 100%PulsePulse10% to 100%Pulse11% of the period by the current frequency setting)Duty0.001% to 99.999% (limited by the current frequency setting)Jitter (rms) ≤ 5 MHz: 200 psSthep filter: 2k Sa/s to 30 MSa/s<	Square			
Oversholt $\leq 5\%$ Duty0.01% to 99.99% (limited by the current frequency setting)Non-symmetry1% of the period + 4 nsTypical (1 Vpp) ≤ 5 MHz: 2 ppm of the period + 200 psRampLinearity $\leq 1\%$ of peak output (typical, 1 kHz, 1 VPP, 100% symmetry)Symmetry0% to 100%PulsePulse16 ns to 1000 ks (limited by the current frequency setting)Duty0.001% to 99.99% (limited by the current frequency setting)Duty0.001% to 99.99% (limited by the current frequency setting)OvershootTypical (1 Vpp, 1 kHz) $\leq 5\%$ Typical (1 Vpp, 1 kHz)Overshoot $\leq 5\%$ Arbitrary Waveform SequenceWaveform LengthWaveform Length2 Mpts (optional 8 Mpts)Vertical Resolution16 bitsInterpolation filter: 2k Sa/s to 30 MSa/sSample RateStep filter: 30/sample rateSmooth filter: 1.0/sample rateSmooth filter: <5 ps	Rise/Fall Time			
Non-symmetry1% of the period + 4 nsTypical (1 Vpp)Jitter (rms) \leq 5 MHz: 200 psRampLinearity \leq 1% of peak output (typical, 1 kHz, 1 VPP, 100% symmetry)Symmetry0% to 100%PulsePulse16 ns to 1000 ks (limited by the current frequency setting)Rising/Falling Edge \geq 8 ns (limited by the current frequency setting)Rising/Falling Edge \geq 8 ns (limited by the current frequency setting)OvershootTypical (1 Vpp, 1 kHz) \leq 5% \leq 5%Jitter (rms) \leq 5 MHz: 2 ppm of the period + 200 ps \geq 5 MHz: 2 ppm of the period + 200 ps \geq 5 MHz: 2 ppm of the period + 200 ps \geq 5 MHz: 20 pp sArbitrary Waveform SequenceWaveform Length2 Mpts (optional 8 Mpts)Vertical Resolution16 bitsInterpolation filter: 10 Sa/s to 30 MSa/sSample RateStep filter: \geq 8/s to 30 MSa/sMin Rise/Fall TimeStep filter: \geq 10/s ample rateTypical (1 Vpp)Jitter (rms)Typical (1 Vpp)Jitter (rms)Typical (1 Vpp)Jitter (rms)Step filter: \geq 5 psOvershootTypical (1 Vpp)Jitter (rms)Typical (1 Vpp)Harmonic OutputHarmonic, Odd Harmonic, Order Harmonic, UserHarmonic OutputHarmonic, Odd Harmonic, Order Harmonic, UserHarmonic TypeEven Harmonic, Odd Harmonic, Can be set.Harmonic PhaseThe phase of each order of harmonic can be set.Harmonic PhaseThe phase of each order of harmonic can be	Overshoot			
Jitter (rms) Typical (1 Vpp) Jitter (rms) S MHz: 20 ps Ramp 1 Linearity \$1% of peak output (typical, 1 kHz, 1 VPP, 100% symmetry) Symmetry 0% to 100% Pulse 16 ns to 1000 ks (limited by the current frequency setting) Duty 0.001% to 99.999% (limited by the current frequency setting) Overshoot Typical (1 Vpp, 1 kHz) Vershoot Typical (1 Vpp, 1 kHz) Overshoot Typical (1 Vpp) s5% Hz: 20 ps Arbitrary Waveform Sequence Ypical (1 Vpp) Vertical Resolution 16 bits Interpolation filter: 10 Sa/s to 30 MSa/s Sample Rate Step filter: 2k Sa/s to 30 MSa/s Sample Rate Step filter: 3.0/sample rate Smooth filter: 1.0/sample rate Smooth filter: 45 ps Jitter (rms) Step filter: <5 ps	Duty	0.01% to 99.99% (limited by the current frequency setting)		
Jitter (rms) ≤5 MHz: 2 ppm of the period + 200 ps >5 MHz: 200 ps Ramp Linearity ≤1% of peak output (typical, 1 kHz, 1 VPP, 100% symmetry) Symmetry 0% to 100% Pulse 16 ns to 1000 ks (limited by the current frequency setting) Duty 0.001% to 99.999% (limited by the current frequency setting) Duty 0.001% to 99.999% (limited by the current frequency setting) Overshoot ≤5% Typical (1 Vpp, 1 kHz) ≤5 MHz: 2 ppm of the period + 200 ps >5 MHz: 200 ps Arbitrary Waveform Sequence Waveform Length 2 Mpts (optional 8 Mpts) Vertical Resolution 16 bits Interpolation filter: 10 Sa/s to 30 MSa/s Sample Rate Step filter: 1.0 Sa/s to 30 MSa/s Step filter: 3.0/sample rate Step filter: 4.5 ps Smooth filter: 200 ps Step filter: <5 ps	Non-symmetry	1% of the period + 4 ns		
Linearity ≤1% of peak output (typical, 1 kHz, 1 VPP, 100% symmetry) Symmetry 0% to 100% Pulse Pulse Pulse 16 ns to 1000 ks (limited by the current frequency setting) Duty 0.001% to 99.999% (limited by the current frequency setting) Overshoot ≤8 ns (limited by the current frequency setting and pulse width setting) Overshoot ≤5% Typical (1 Vpp, 1 kHz) ≤5% Arbitrary Waveform Sequence Waveform Length 2 Mpts (optional 8 Mpts) Vertical Resolution 16 bits Interpolation filter: 10 Sa/s to 30 MSa/s Sample Rate Step filter: 2k Sa/s to 30 MSa/s Smooth filter: 2.0/sample rate Smooth filter: 3.0/sample rate Step filter: 4.5 ps Smooth filter: 4.5 ps Overshoot ≤5% Harmonic Output Harmonic Order ≤8 Harmonic Type Even Harmonic, Odd Harmonic, Order Harmonic, User Harmonic Phase The phase of each order of the harmonic can be set. Harmonic Phase The phase of each order of harmonic can be set. Harmonic Phase The phase of each order of the maronic can be set.	Jitter (rms)	\leq 5 MHz: 2 ppm of the period + 200 ps		
Symmetry0% to 100%PulsePulsePulse16 ns to 1000 ks (limited by the current frequency setting)Duty0.001% to 99.999% (limited by the current frequency setting)Rising/Falling Edge≥8 ns (limited by the current frequency setting and pulse width setting)OvershootTypical (1 Vpp, 1 kHz) \leq 5%/bJitter (rms) \leq 5 MHz: 2 ppm of the period + 200 ps> 5 MHz: 200 psArbitrary Waveform SequenceWaveform Length2 Mpts (optional 8 Mpts)Vertical Resolution16 bitsInterpolation filter: 10 Sa/s to 30 MSa/sSample RateStep filter: 2k Sa/s to 30 MSa/sSmooth filter: 2k Sa/s to 30 MSa/sMin Rise/Fall TimeStep filter: 3.0/sample rateJitter (rms)Step filter: 3.0/sample rateJitter (rms)Interpolation filter: 200 psStep filter: <5 ps	Ramp			
PulsePulse16 ns to 1000 ks (limited by the current frequency setting)Duty0.001% to 99.999% (limited by the current frequency setting)Rising/Falling Edge≥8 ns (limited by the current frequency setting and pulse width setting)OvershootTypical (1 Vpp, 1 kHz) ≤5%Jitter (rms)≤5 MHz: 2 ppm of the period + 200 ps >5 MHz: 200 psArbitrary Waveform SequenceYpvical (1 Vpp, 1 kHz) ≤5 MHz: 200 psWaveform Length2 Mpts (optional 8 Mpts)Vertical Resolution16 bitsInterpolation filter: 10 Sa/s to 30 MSa/s Smooth filter: 2k Sa/s to 30 MSa/s Smooth filter: 2k Sa/s to 30 MSa/sSample RateStep filter: 3.0/sample rate Step filter: 3.0/sample rate Step filter: 45 ps Smooth filter: 200 psJitter (rms)Typical (1 Vpp) Interpolation filter: 200 ps Step filter: 3.0/sample rate Smooth filter: 45 psJitter (rms)Typical (1 Vpp) Interpolation filter: 200 ps Step filter: <5 ps Smooth filter: <5 ps	Linearity	≤1% of peak output (typical, 1 kHz, 1 VPP, 100% symmetry)		
Pulse16 ns to 1000 ks (limited by the current frequency setting)Duty0.001% to 99.999% (limited by the current frequency setting)Rising/Falling Edge \geq 8 ns (limited by the current frequency setting and pulse width setting)Overshoot \leq 55%Typical (1 Vpp) \leq 5 MHz: 2 ppm of the period + 200 ps> 5 MHz: 200 psArbitrary Waveform SequenceWaveform Length2 Mpts (optional 8 Mpts)Vertical Resolution16 bitsSample RateStep filter: 2k Sa/s to 30 MSa/sSample RateStep filter: 2k Sa/s to 30 MSa/sMin Rise/Fall TimeStep filter: 1.0/sample rateJitter (rms)Typical (1 Vpp)Jitter (rms)Typical (1 Vpp)Interpolation filter: 200 psArbitrary Use (rms)Step filter: 2k Sa/s to 30 MSa/sSample RateStep filter: 3.0/sample rateSmooth filter: 1.0/sample rateTypical (1 Vpp)Jitter (rms)Typical (1 Vpp)Jitter (rms)Typical (1 Vpp)Min Rise/Fall TimeStep filter: <5 ps	Symmetry	0% to 100%		
Duty0.001% to 99.999% (limited by the current frequency setting)Rising/Falling Edge≥8 ns (limited by the current frequency setting and pulse width setting)OvershootTypical (1 Vpp, 1 kHz) ≤5%Jitter (rms)≤5 MHz: 2 ppm of the period + 200 ps >5 MHz: 200 psArbitrary Waveform SequencePayload (1 Vpp, 1 kHz) ≤5 MHz: 200 psWaveform Length2 Mpts (optional 8 Mpts)Vertical Resolution16 bitsInterpolation filter: 10 Sa/s to 30 MSa/s Sample RateInterpolation filter: 10 Sa/s to 30 MSa/s Smooth filter: 2k Sa/s to 30 MSa/sMin Rise/Fall TimeStep filter: 3.0/sample rate Smooth filter: 1.0/sample rateJitter (rms)Typical (1 Vpp) Interpolation filter: 200 ps Step filter: 3.0/sample rateJitter (rms)Typical (1 Vpp) Interpolation filter: 2.8 Sn Smooth filter: 1.0/sample rate Smooth filter: 1.0/sample rateOvershootTypical (1 Vpp) Interpolation filter: 200 ps Step filter: <5 ps Smooth filter: <5 ps	Pulse			
Rising/Falling Edge≥8 ns (limited by the current frequency setting and pulse width setting)OvershootTypical (1 Vpp, 1 kHz) ≤5%Jitter (rms)55 MHz: 2 ppm of the period + 200 ps >55 MHz: 200 psArbitrary Waveform SequenceSequenceWaveform Length2 Mpts (optional 8 Mpts)Vertical Resolution16 bitsSample RateStep filter: 2k Sa/s to 30 MSa/s Smooth filter: 2k Sa/s to 30 MSa/sMin Rise/Fall TimeStep filter: 3.0/sample rate Smooth filter: 1.0/sample rateJitter (rms)Typical (1 Vpp) Step filter: 3.0/sample rateJitter (rms)Typical (1 Vpp) Step filter: 200 ps Step filter: 200 psJitter (rms)Typical (1 Vpp) Interpolation filter: 200 ps Step filter: 200 ps Step filter: 3.0/sample rateJitter (rms)Typical (1 Vpp) Interpolation filter: 200 ps Step filter: <5 ps Smooth filter: <5 ps Smooth filter: <5 ps	Pulse	16 ns to 1000 ks (limited by the current frequency setting)		
OvershootTypical (1 Vpp, 1 kHz) ≤5%Jitter (rms) $\leq 5\%$ Jitter (rms) ≤ 5 MHz: 2 ppm of the period + 200 psArbitrary Waveform SequenceWaveform Length2 Mpts (optional 8 Mpts)Vertical Resolution16 bitsSample RateStep filter: 10 Sa/s to 30 MSa/sSample RateStep filter: 2k Sa/s to 30 MSa/sSmooth filter: 2k Sa/s to 30 MSa/sSitter (rms)Step filter: 3.0/sample rateJitter (rms)Step filter: 1.0/sample rateJitter (rms)Typical (1 Vpp) Interpolation filter: 200 psOvershootTypical (1 Vpp) Step filter: <5 ps	Duty	0.001% to 99.999% (limited by the current frequency setting)		
Overshoot $\leq 5\%$ Jitter (rms) ≤ 5 MHz: 2 ppm of the period + 200 psArbitrary WaveformSequenceWaveform Length2 Mpts (optional 8 Mpts)Vertical Resolution16 bitsInterpolation filter: 10 Sa/s to 30 MSa/sSample RateStep filter: 2k Sa/s to 30 MSa/sSimoth filter: 2k Sa/s to 30 MSa/sSample RateStep filter: 3.0/sample rateMin Rise/Fall TimeTypical (1 Vpp)Jitter (rms)Interpolation filter: 200 psStep filter: <5 ps	Rising/Falling Edge	≥ 8 ns (limited by the current frequency setting and pulse width setting)		
Jitter (rms) ≤5 MHz: 2 ppm of the period + 200 ps > 5 MHz: 200 ps Arbitrary Waveform Sequence Waveform Length 2 Mpts (optional 8 Mpts) Vertical Resolution 16 bits Sample Rate Interpolation filter: 10 Sa/s to 30 MSa/s Sample Rate Step filter: 2k Sa/s to 30 MSa/s Sample Rate Interpolation filter: 28 ns Min Rise/Fall Time Step filter: 3.0/sample rate Smooth filter: 1.0/sample rate Smooth filter: 45 ps Somoth filter: 45 ps Smooth filter: 45 ps Overshoot Z9% Harmonic Output 48 Harmonic Order ≤8 Harmonic Type Even Harmonic, Odd Harmonic, Order Harmonic, User Harmonic Phase The amplitude of each order of the harmonic can be set. Output Characteristics Amplitude (into 50 Ω) Amplitude (into 50 Ω) ≤10 MHz: 1.0 mVpp to 10 Vpp	Overshoot			
Arbitrary Waveform SequenceWaveform Length2 Mpts (optional 8 Mpts)Vertical Resolution16 bitsSample RateInterpolation filter: 10 Sa/s to 30 MSa/sSample RateStep filter: 2k Sa/s to 30 MSa/sSmooth filter: 2k Sa/s to 30 MSa/sMin Rise/Fall TimeInterpolation filter: ≥ 8 nsMin Rise/Fall TimeStep filter: 1.0 /sample rateJitter (rms)Typical (1 Vpp)Interpolation filter: < 5 psSmooth filter: < 5 psSmooth filter: < 5 psSmooth filter: < 5 psOvershootTypical (1 Vpp) $\leq 5\%$ Harmonic OutputHarmonic Order ≤ 8 Harmonic TypeEven Harmonic, Odd Harmonic, Order Harmonic, UserHarmonic PhaseThe amplitude of each order of the harmonic can be set.Output CharacteristicsAmplitude (into 50Ω) ≤ 10 MHz: 1.0 mVpp to 10 Vpp	Jitter (rms)	\leq 5 MHz: 2 ppm of the period + 200 ps		
Waveform Length2 Mpts (optional 8 Mpts)Vertical Resolution16 bitsSample RateInterpolation filter: 10 Sa/s to 30 MSa/s Step filter: 2k Sa/s to 30 MSa/s Smooth filter: 2k Sa/s to 30 MSa/sMin Rise/Fall TimeInterpolation filter: 28 ns Step filter: 3.0/sample rate Smooth filter: 1.0/sample rateJitter (rms)Typical (1 Vpp) Interpolation filter: <5 ps Smooth filter: <5 ps Smooth filter: <5 ps Smooth filter: <5 ps	Arbitrary Wavefor			
Vertical Resolution16 bitsSample RateInterpolation filter: 10 Sa/s to 30 MSa/s Step filter: 2k Sa/s to 30 MSa/s Smooth filter: 2k Sa/s to 30 MSa/sMin Rise/Fall TimeInterpolation filter: ≥ 8 ns Step filter: 3.0/sample rate Smooth filter: 1.0/sample rateJitter (rms)Typical (1 Vpp) Interpolation filter: ≥ 20 ps Step filter: <5 ps Smooth filter: <5 ps Smooth filter: <5 ps				
Sample RateStep filter: 2k Sa/s to 30 MSa/s Smooth filter: 2k Sa/s to 30 MSa/sMin Rise/Fall TimeInterpolation filter: ≥ 8 ns Step filter: 3.0/sample rate Smooth filter: 1.0/sample rateJitter (rms)Typical (1 Vpp) Interpolation filter: 200 ps Step filter: <5 ps Smooth filter: <5 ps Smooth filter: <5 ps	Vertical Resolution	16 bits		
Min Rise/Fall TimeInterpolation filter: ≥ 8 ns Step filter: 3.0 /sample rate Smooth filter: 1.0 /sample rateJitter (rms)Typical (1 Vpp) Interpolation filter: 200 ps Step filter: <5 ps Smooth filter: <5 ps Smooth filter: <5 ps Smooth filter: <5 %OvershootTypical (1 Vpp) $\leq 5\%$ Harmonic OutputHarmonic OrderHarmonic TypeEven Harmonic, Odd Harmonic, Order Harmonic, UserHarmonic AmplitudeHarmonic PhaseThe phase of each order of the harmonic can be set.Output Characteristics Amplitude (into 50Ω) ≤ 10 MHz: 1.0 mVpp to 10 Vpp	Sample Rate	Step filter: 2k Sa/s to 30 MSa/s		
Jitter (rms)Typical (1 Vpp) Interpolation filter: 200 ps Step filter: <5 ps Smooth filter: <5 ps Smooth filter: <5 psOvershootTypical (1 Vpp) ≤5%Harmonic OutputHarmonic Order≤8Harmonic TypeEven Harmonic, Odd Harmonic, Order Harmonic, UserHarmonic AmplitudeThe amplitude of each order of the harmonic can be set.Harmonic PhaseThe phase of each order of harmonic can be set.Output Character:Amplitude (into 50 Ω)≤10 MHz: 1.0 mVpp to 10 Vpp	Min Rise/Fall Time	Interpolation filter: ≥8 ns Step filter: 3.0/sample rate		
OvershootTypical (1 Vpp) ≤5%Harmonic OutputHarmonic Order≤8Harmonic TypeEven Harmonic, Odd Harmonic, Order Harmonic, UserHarmonic AmplitudeThe amplitude of each order of the harmonic can be set.Harmonic PhaseThe phase of each order of harmonic can be set.Output CharacteristicsAmplitude (into 50 Ω)≤10 MHz: 1.0 mVpp to 10 Vpp	Jitter (rms)	Typical (1 Vpp) Interpolation filter: 200 ps Step filter: <5 ps		
Harmonic OutputHarmonic Order≤8Harmonic TypeEven Harmonic, Odd Harmonic, Order Harmonic, UserHarmonicThe amplitude of each order of the harmonic can be set.Harmonic PhaseThe phase of each order of harmonic can be set.Output CharacteristicsAmplitude (into 50 Ω)≤10 MHz: 1.0 mVpp to 10 Vpp	Overshoot	Typical (1 Vpp)		
Harmonic Order ≤ 8 Harmonic TypeEven Harmonic, Odd Harmonic, Order Harmonic, UserHarmonicThe amplitude of each order of the harmonic can be set.AmplitudeThe phase of each order of harmonic can be set.Output CharacteristicsAmplitude (into 50 Ω) ≤ 10 MHz: 1.0 mVpp to 10 Vpp	Harmonic Output			
Harmonic Type Even Harmonic, Odd Harmonic, Order Harmonic, User Harmonic The amplitude of each order of the harmonic can be set. Harmonic Phase The phase of each order of harmonic can be set. Output Characteristics Amplitude (into 50 Ω) ≤10 MHz: 1.0 mVpp to 10 Vpp		≤8		
Harmonic Amplitude The amplitude of each order of the harmonic can be set. Harmonic Phase The phase of each order of harmonic can be set. Output Characteristics Amplitude (into 50 Ω) ≤10 MHz: 1.0 mVpp to 10 Vpp		Even Harmonic, Odd Harmonic, Order Harmonic, User		
Harmonic Phase The phase of each order of harmonic can be set. Output Characteristics Amplitude (into 50 Ω) ≤10 MHz: 1.0 mVpp to 10 Vpp	Harmonic			
Amplitude (into 50 Ω) ≤ 10 MHz: 1.0 mVpp to 10 Vpp		The phase of each order of harmonic can be set.		
Amplitude (into 50 Ω) ≤ 10 MHz: 1.0 mVpp to 10 Vpp	Output Characteri	istics		
≤10 MHz: 1.0 mVpp to 10 Vpp				
≤35 MHz: 1.0 mVpp to 2.5 Vpp	Range	≤10 MHz: 1.0 mVpp to 10 Vpp ≤30 MHz: 1.0 mVpp to 5.0 Vpp		

Accuracy	Typical (1 kHz sine, 0 V offset, >10 mVpp, auto)				
	\pm (1% of the setting value) \pm 5 mV				
	Typical (Sine, 1 Vpp)				
	≤5 MHz: ±0.1 dB				
Flatness	≤15 MHz: ±0.2 dB				
	≤25 MHz: ±0.3 dB				
	≤35MHz: ±0.5 dB				
Unit	Vpp, Vrms, dBm				
Resolution	0.1 mVpp or 4 digits				
Offset (into 50 Ω)					
Range (Peak	±5 Vpk ac+dc				
ac+dc)					
Accuracy	\pm (1% of the setting value + 5 mV + 1% of the amplitude)				
Waveform Output					
Output Impedance	50Ω (typical)				
Protection	Short-circuit protection, automatically disable the waveform output when				
	overload occurs				
Modulation Chara					
Modulation Type	AM, FM, PM, ASK, FSK, PSK, PWM				
AM					
Carrier Waveform	Sine, Square, Ramp, Arb				
Source	Internal/External				
Modulating	Sine, Square, Ramp, Noise, Arb				
Waveform					
Modulation Depth	0% to 120%				
Modulation	2 mHz to 1 MHz				
Frequency					
FM					
Carrier Waveform	Sine, Square, Ramp, Arb				
Source	Internal/External				
Modulating	Sine, Square, Ramp, Noise, Arb				
Waveform					
Modulation	2 mHz to 1 MHz				
Frequency					
PM					
Carrier Waveform	Sine, Square, Ramp, Arb				
Source	Internal/External				
Modulating	Sine, Square, Ramp, Noise, Arb				
Waveform					
Phase Deviation	0° to 360°				
Modulation	2 mHz to 1 MHz				
Frequency					
ASK					
Carrier Waveform	Sine, Square, Ramp, Arb				
Source	Internal/External				
Modulating	Square with 50% duty cycle				
Waveform					
Key Frequency	2 mHz to 1 MHz				
FSK					
Carrier Waveform	Sine, Square, Ramp, Arb				
Source	Internal/External				

	Τ			
Modulating Waveform	Square with 50% duty cycle			
Key Frequency	2 mHz to 1 MHz			
PSK				
Carrier Waveform	Sine, Square, Ramp, Arb			
Source	Internal/External			
Modulating				
Waveform	Square with 50% duty cycle			
Key Frequency	2 mHz to 1 MHz			
PWM				
Carrier Waveform	Pulse			
Source	Internal/External			
Modulating				
Waveform	Sine, Square, Ramp, Noise, Arb			
Width Deviation	0% to 100% of the pulse width			
Modulation				
Frequency	2 mHz to 1 MHz			
External Modulation Input				
	AM, PM, FM: 75 mVRMS to ±5 (Vac+dc)			
Input Range	ASK, PSK, FSK: standard 5 V TTL			
Input Bandwidth	50 kHz			
Input Impedance	10 kΩ			
Burst Characteris	tics			
Carrier Waveform	Sine, Square, Ramp, Pulse, Noise, Arb, PRBS, RS232, Sequence (except DC, dual-tone, and Harmonic)			
Carrier Frequency	2 mHz to 10 MHz 2 mHz to 25 MHz 2 mHz to 35 MHz			
Burst Count	1 to 1,000,000 or Infinite			
Internal Period	1 μs to 500 s			
Gated Source	External Trigger			
Source	Internal, External, Manual			
Trigger Delay	0 ns to 100 s			
Sweep Characteri				
Carrier Waveform	Sine, Square, Ramp, Arb			
Туре	Linear, Log, and Step			
Orientation	Up/Down			
Start/Stop	Same as the upper/lower limit of the corresponding carrier frequency			
Frequency	sume us the uppernower limit of the corresponding curren nequency			
Sweep Time	1 ms to 500 s			
Hold/Return Time	0 ms to 500 s			
Source	Internal, External, Manual			
Marker	Falling edge of the sync signal (programmable)			
Frequency Counter	er			
Measurement	Frequency, Period, Positive/Negative Pulse Width, Duty Cycle			
Function				
Frequency	7 digits/s (Gate Time = 1 s)			
Resolution				
Frequency Range	1 μHz to 240 MHz			
Period	Measurement Range 4 ns to 1,000 ks			
Measurement	Nieasurenieni Kange 4 ns to 1,000 KS			

Voltage Range an	d Sensitivity (non-mo	dulating signal)				
	DC Offset Range	±1.5 Vdc				
DC Coupling	1 µHz to 100 MHz	50 mVRMS to ±2.5 (Va	ic+dc)			
5	100 MHz to 240 MHz	100 mVRMS to ± 2.5 (Vac+dc)				
	1 µHz to 100 MHz	50 mVRMS to ±2.5 Vpp				
AC Coupling	100 MHz to 240 MHz	100 mVRMS to ± 2.5 Vpp				
Pulse Width and D	Duty Cycle Measureme					
Frequency and		50 mVRMS to ±2.5				
Amplitude Ranges	1 µHz to 25 MHz	(Vac+dc)				
	Min. Pulse Width	≥20 ns				
Pulse Width	Pulse Width	Г ma	DC Coupling			
	Resolution	5 ns				
Duty	Measurement Range	0% to 100%				
Duty	(display)	0 % 10 100 %				
Input Characteris						
Input Signal Range	Disruptive Discharge	±7 (Vac+dc)	Input Impedance = 1			
Input Signal Range	Voltage		MΩ			
	Coupling Mode	AC	DC			
Input Adjustment	High Frequency	On: Input Bandwidth =				
	Rejection	Off: Input Bandwidth =	= 240 MHz			
	Trigger Level Range	-2.5 V to +2.5 V				
Input Trigger	Trigger Sensitivity	High, Low				
	Range	5				
	1 ms	1.048 ms				
	10 ms	8.389 ms				
GateTime	100 ms	134.218 ms				
	1s	1.074 s				
	10 s	8.590 s				
	>10 s	>8.590 s				
Trigger Characteristics						
Trig Input						
Level		TTL-compatible				
Slope		Rising or falling (selectable)				
Pulse Width	>100 ns					
Latency	Sweep: <100 ns (typic					
Buist: <350 IIS (typical)						
Trigger Output						
Level Pulse Width	TTL-compatible >60 ns (typical)					
	1 MHz					
Max. Frequency 1 MHz						
Two-channel Cha	racteristics - Phase Of	ffset				
Range	0° to 360°	1301				
Waveform Phase						
Resolution	0.03°					
	ı					
Reference Clock						
External Reference	e Input					
Lock Range	10 MHz ± 50 Hz					
Level	250 mVpp to 5 Vpp					
Lock Time	<2 s					

Input Impedance (Typical) 1 kΩ, AC coupling Internal Reference Output Internal Reference Output Frequency 10 MHz ± 50 Hz Level 3.3 Vpp Output Impedance (Typical) 50 Ω, AC coupling Synchronous Output Level Level TL-compatible Impedance 50 Ω, nominal value Overvoltage Protection Occurred when: Occurred when: • The instrument amplitude setting is greater than 3.2 Vpp or the output AC+DC is greater than $ 1.6 V_{DC} $ and the input voltage is greater than $\pm 12 \times (1 \pm 5\%)V$ (<10 kHz). Disruptive discharge voltage: $\pm 18(Vac + dc)$. • The instrument amplitude setting is smaller than or equal to 3.2 Vpp or the output AC+DC is smaller than $ 1.6 V_{DC} $ and the input voltage is greater than $\pm 2.6 \times (1 \pm 5\%)V$ (<10 kHz). Disruptive discharge voltage: $\pm 5(Vac + dc)$. • The instrument is greater than ± 240 mA. Overcurrent Protection Occurred when: the current is greater than ± 240 mA. Orgramming Time Configuration Changes 10 ms Amplitude Change 5 ms Frequency Change 5 ms Frequency Change 5 ms Frequency Change 5 ms Power Sup			
Frequency 10 MHz ± 50 Hz Level 3.3 Vpp Output Impedance 50Ω , AC coupling Synchronous Output Index of the second			
Level 3.3 Vpp Output Impedance (Typical) 50 Ω, AC coupling Synchronous Output Intercompatible Level TTL-compatible Impedance 50 Ω, nominal value Overvoltage Protection Occurred when: The instrument amplitude setting is greater than 3.2 Vpp or the output AC+DC is greater than 1.6 Vpc and the input voltage is greater than ±12 × (1 ± 5%)V (<10 kH2). Disruptive discharge voltage: ±18(Vac + dc). The instrument amplitude setting is smaller than or equal to 3.2 Vpp or the output AC+DC is smaller than 1.6 Vpc and the input voltage is greater than ±2.6 × (1 ± 5%)V (<10 kH2). Disruptive discharge voltage: ±5(Vac + dc). The instrument becomposition or equal to 3.2 Vpp or the output AC+DC is smaller than 1.6 Vpc and the input voltage is greater than ±2.6 × (1 ± 5%)V (<10 kH2). Disruptive discharge voltage: ±5(Vac + dc).			
Output Impedance (Typical) 50 Ω, AC coupling Synchronous Output Level Impedance 50 Ω, nominal value Overvoltage Protection Occurred when: • The instrument amplitude setting is greater than 3.2 Vpp or the output AC+DC is greater than 1.6 V _{DC} and the input voltage is greater than ±12 × (1 ± 5%)V (<10 kHz). Disruptive discharge voltage: ±18(Vac + dc). • The instrument amplitude setting is smaller than or equal to 3.2 Vpp or the output AC+DC is smaller than 1.6 V _{DC} and the input voltage is greater than ±2.6 × (1 ± 5%)V (<10 kHz). Disruptive discharge voltage: ±5(Vac + dc). • The instrument is greater than ±240 mA. Overcurrent Protection Occurred when: the current is greater than ±240 mA. Programming Time Configuration USB Function Change 10 ms Amplitude Change 5 ms Frequency Change 5 ms Frequency Change 100 V to 127 V (45 Hz to 440 Hz) 00 V to 240 V (45 Hz to 65 Hz) 100 V to 127 V (45 Hz to 645 Hz) Power 100 V to 127 V (45 Hz to 645 Hz)			
(Typical) 50 Ω, AC coupling Synchronous Output Impedance Level TTL-compatible Impedance 50 Ω, nominal value Overvoltage Protection Occurred when: • The instrument amplitude setting is greater than 3.2 Vpp or the output AC+DC is greater than 11.6 V _{DC} and the input voltage is greater than ±12 × (1 ± 5%)V (<10 kHz). Disruptive discharge voltage: ±18(Vac + dc).			
Level TTL-compatible Impedance 50 Ω, nominal value Overvoltage Protection Occurred when: The instrument amplitude setting is greater than 3.2 Vpp or the output AC+DC is greater than 1.6 V_{DC} and the input voltage is greater than ±12 × (1 ± 5%)V (<10 kHz). Disruptive discharge voltage: ±18(Vac + dc). The instrument amplitude setting is smaller than or equal to 3.2 Vpp or the output AC+DC is smaller than 1.6 V _{DC} and the input voltage is greater than ±2.6 × (1 ± 5%)V (<10 kHz).			
Impedance 50 Ω, nominal value Overvoltage Protection Occurred when: • • The instrument amplitude setting is greater than 3.2 Vpp or the output AC+DC is greater than 1.6 V _{DC} and the input voltage is greater than ±12 × (1 ± 5%)V (<10 kHz). Disruptive discharge voltage: ±18(Vac + dc).			
Overvoltage Protection Occurred when: The instrument amplitude setting is greater than 3.2 Vpp or the output AC+DC is greater than 1.6 V _{DC} and the input voltage is greater than ±12 × (1 ± 5%)V (<10 kHz). Disruptive discharge voltage: ±18(Vac + dc).			
Occurred when: The instrument amplitude setting is greater than 3.2 Vpp or the output AC+DC is greater than 1.6 V_{DC} and the input voltage is greater than ±12 × (1 ± 5%)V (<10 kHz). Disruptive discharge voltage: ±18(Vac + dc). The instrument amplitude setting is smaller than or equal to 3.2 Vpp or the output AC+DC is smaller than 1.6 V_{DC} and the input voltage is greater than ±2.6 × (1 ± 5%)V (<10 kHz). Disruptive discharge voltage: ±5(Vac + dc). Overcurrent Protection Occurred when: the current is greater than ±240 mA. Programming Time Configuration Change USB Function Change To ms Amplitude Change The smaller set is mailer to 440 Hz) 100 V to 127 V (45 Hz to 440 Hz) 100 V to 240 V (45 Hz to 65 Hz) 			
Occurred when: The instrument amplitude setting is greater than 3.2 Vpp or the output AC+DC is greater than 1.6 V_{DC} and the input voltage is greater than ±12 × (1 ± 5%)V (<10 kHz). Disruptive discharge voltage: ±18(Vac + dc). The instrument amplitude setting is smaller than or equal to 3.2 Vpp or the output AC+DC is smaller than 1.6 V_{DC} and the input voltage is greater than ±2.6 × (1 ± 5%)V (<10 kHz). Disruptive discharge voltage: ±5(Vac + dc). Overcurrent Protection Occurred when: the current is greater than ±240 mA. Programming Time Configuration Change USB Function Change To ms Amplitude Change The smaller set is mailer to 440 Hz) 100 V to 127 V (45 Hz to 440 Hz) 100 V to 240 V (45 Hz to 65 Hz) 			
 The instrument amplitude setting is greater than 3.2 Vpp or the output AC+DC is greater than 1.6 V_{DC} and the input voltage is greater than ±12 × (1 ± 5%)V (<10 kHz). Disruptive discharge voltage: ±18(Vac + dc). The instrument amplitude setting is smaller than or equal to 3.2 Vpp or the output AC+DC is smaller than 1.6 V_{DC} and the input voltage is greater than ±2.6 × (1 ± 5%)V (<10 kHz). Disruptive discharge voltage: ±5(Vac + dc). Overcurrent Protection Occurred when: the current is greater than ±240 mA. Programming Time Configuration Change 10 ms Amplitude Change 5 ms Frequency Change 5 ms Frequency Change 5 ms Fower Supply Power Voltage 100 V to 127 V (45 Hz to 440 Hz) 100 V to 240 V (45 Hz to 65 Hz) Power Lower than 30 W Amplitude change 30 W Construct than 30 W			
than 1.6 V _{DC} and the input voltage is greater than ±12 × (1 ± 5%)V (<10 kHz).			
Disruptive discharge voltage: ±18(Vac + dc). The instrument amplitude setting is smaller than or equal to 3.2 Vpp or the output AC+DC is smaller than 1.6 V _{DC} and the input voltage is greater than ±2.6 × (1 ± 5%)V (<10 kHz). Disruptive discharge voltage: ±5(Vac + dc). Overcurrent Protection Occurred when: the current is greater than ±240 mA. Programming Time Configuration Changes USB Function Change 10 ms Amplitude Change 5 ms Frequency Change 5 ms Frequency Change 5 ms Power Supply Power Voltage 100 V to 127 V (45 Hz to 440 Hz) 100 V to 240 V (45 Hz to 65 Hz) Power Voltage 100 V to 240 V (45 Hz to 65 Hz)			
 The instrument amplitude setting is smaller than or equal to 3.2 Vpp or the output AC+DC is smaller than 1.6 V_{DC} and the input voltage is greater than ±2.6 × (1 ± 5%)V (<10 kHz). Disruptive discharge voltage: ±5(Vac + dc). Overcurrent Protection Occurred when: the current is greater than ±240 mA. Programming Time			
is smaller than 1.6 V _{DC} and the input voltage is greater than ±2.6 × (1 ± 5%)V (<10 kHz). Disruptive discharge voltage: ±5(Vac + dc). Overcurrent Protection Occurred when: the current is greater than ±240 mA. Programming Time Configuration Changes USB Function Change 10 ms Amplitude Change 5 ms Frequency Change 5 ms Frequency Change 5 ms Frequency Change 5 ms Power Supply Power Voltage 100 V to 127 V (45 Hz to 440 Hz) 100 V to 240 V (45 Hz to 45 Hz) Power Voltage 100 V to 240 V (45 Hz to 65 Hz)			
kHz). Disruptive discharge voltage: ±5(Vac + dc). Overcurrent Protection Occurred when: the current is greater than ±240 mA. Programming Time Configuration USB Changes 10 ms Function Change 10 ms Amplitude Change 5 ms Frequency Change 5 ms Frequency Change 5 ms Power Supply Power Voltage 100 V to 127 V (45 Hz to 440 Hz) 100 V to 240 V (45 Hz to 65 Hz) Power Lower than 30 W			
Overcurrent Protection Occurred when: the current is greater than ±240 mA. Programming Time Configuration USB Changes 10 ms Function Change 10 ms Amplitude Change 5 ms Frequency Change 5 ms General Specifications Power Supply 100 V to 127 V (45 Hz to 440 Hz) Power Voltage 100 V to 240 V (45 Hz to 65 Hz) Power Lower than 30 W			
Occurred when: the current is greater than ±240 mA. Programming Time Configuration USB Changes 10 ms Function Change 10 ms Amplitude Change 5 ms Frequency Change 5 ms General Specifications Power Supply Power Voltage 100 V to 127 V (45 Hz to 440 Hz) 100 V to 240 V (45 Hz to 65 Hz) Power Lower than 30 W			
Occurred when: the current is greater than ±240 mA. Programming Time Configuration USB Changes 10 ms Function Change 10 ms Amplitude Change 5 ms Frequency Change 5 ms General Specifications Power Supply Power Voltage 100 V to 127 V (45 Hz to 440 Hz) 100 V to 240 V (45 Hz to 65 Hz) Power Lower than 30 W			
Programming Time Configuration Changes USB Function Change 10 ms Amplitude Change 5 ms Frequency Change 5 ms Frequency Change 5 ms General Specifications Power Supply Power Voltage 100 V to 127 V (45 Hz to 440 Hz) 100 V to 240 V (45 Hz to 65 Hz) Power Lower than 30 W			
Configuration Changes USB Function Change 10 ms Amplitude Change 5 ms Frequency Change 5 ms General Specifications Power Supply Power Voltage 100 V to 127 V (45 Hz to 440 Hz) 100 V to 240 V (45 Hz to 65 Hz) Power Lower than 30 W			
Configuration Changes USB Function Change 10 ms Amplitude Change 5 ms Frequency Change 5 ms General Specifications Power Supply Power Voltage 100 V to 127 V (45 Hz to 440 Hz) 100 V to 240 V (45 Hz to 65 Hz) Power Lower than 30 W			
Changes USB Function Change 10 ms Amplitude Change 5 ms Frequency Change 5 ms General Specifications Power Supply 100 V to 127 V (45 Hz to 440 Hz) (45 Hz to 65 Hz) Power Lower than 30 W			
Amplitude Change 5 ms Frequency Change 5 ms General Specifications			
Frequency Change 5 ms General Specifications Power Supply Power Voltage 100 V to 127 V (45 Hz to 440 Hz) 100 V to 240 V (45 Hz to 65 Hz) Power Lower than 30 W			
General Specifications Power Supply 100 V to 127 V (45 Hz to 440 Hz) 100 V to 240 V (45 Hz to 65 Hz) Power Lower than 30 W			
Power Supply Power Voltage 100 V to 127 V (45 Hz to 440 Hz) 100 V to 240 V (45 Hz to 65 Hz) Power Lower than 30 W			
Power Supply Power Voltage 100 V to 127 V (45 Hz to 440 Hz) 100 V to 240 V (45 Hz to 65 Hz) Power Lower than 30 W			
Power Voltage 100 V to 127 V (45 Hz to 440 Hz) 100 V to 240 V (45 Hz to 65 Hz) Power Lower than 30 W			
Power Voltage 100 V to 240 V (45 Hz to 65 Hz) Power Lower than 30 W			
Power Lower than 30 W			
Lower than 30 W			
mption			
Display			
Type 4.3-inch TFT LCD touch screen			
Resolution 480 horizontal × RGB × 272 vertical resolution			
Color 16 M			
Color 16 M Environment			
Color 16 M Environment Temperature Operating: 0°C to 45°C			
Color16 MEnvironmentTemperature RangeOperating: 0°C to 45°CNon-operating: -40°C to 60°C			
Color 16 M Environment Operating: 0°C to 45°C Temperature Operating: -40°C to 60°C Range Non-operating: -40°C to 60°C Cooling Method Natural air cooling			
Color16 MEnvironmentTemperature RangeOperating: 0°C to 45°CNon-operating: -40°C to 60°C			

	40°C to 50°C: ≤45%RH				
	Operating: below 3,000 met	ers			
Altitude	Non-operating: below 15,000 meters				
Mechanical Char	acteristics				
Dimensions (W×H×D)	237.4 mm × 97 mm × 268 mm				
Weight	Package excluded: 1.75 kg Package included: 2.85 kg				
Interface	USB Host, USB Device, and	USB-GPIB			
IP Protection	IP2X				
Calibration Interval	1 year (recommended)				
Certification Information					
	Compliant with EN61326-1:20	006			
	IEC 61000-3-2:2000	±4.0 kV (Contact Discharge) ±4.0 kV (Air Discharge)			
	IEC 61000-4-3:2002	3 V/m (80 MHz to 1 GHz); 3 V/m (1.4 GHz to 2 GHz); 1 V/m (2.0 GHz to 2.7 GHz)			
	IEC 61000-4-4:2004	1kV power line			
ЕМС	IEC 61000-4-5:2001	0.5 kV (phase-to-neutral voltage); 0.5 kV (phase-to-earth voltage); 1 kV (neutral-to-earth voltage)			
	IEC 61000-4-6:2003	3 V, 0.15 MHz to 80 MHz			
	IEC 61000-4-11:2004	Voltage dip: 0% UT during half cycle 0% UT during 1 cycle 70% UT during 25 cycles Short interruption: 0% UT during 1 cycle			
Electrical Safety	complies with USA: UL 61010-1:2012, Canada: CAN/CSA-C22.2 No. 61010-1-2012 EN 61010-1:2010,				

Note^[1]: 0 dBm output, DC offset 0, impedance 50 Ω .