RIGOL Calibration Guide

DG1000 Series Dual-Channel Function/Arbitrary Waveform Generator

Sept. 2015 RIGOL Technologies, Inc.

Guaranty and Declaration

Copyright

© 2010 RIGOL Technologies, Inc. All Rights Reserved.

Trademark Information

RIGOL is a registered trademark of RIGOL Technologies, Inc.

Publication Number

CGB06103-1110

Notices

- **RIGOL** products are covered by P.R.C. and foreign patents, issued and pending.
- **RIGOL** reserves the right to modify or change parts of or all the specifications and pricing policies at company's sole decision.
- Information in this publication replaces all previously corresponding material.
- Information in this publication is subject to change without notice.
- **RIGOL** shall not be liable for either incidental or consequential losses in connection with the furnishing, use or performance of this manual as well as any information contained.
- Any part of this document is forbidden to be copied, photocopied or rearranged without prior written approval of **RIGOL**.

Product Certification

RIGOL guarantees this product conforms to the national and industrial standards in China as well as the ISO9001:2008 standard and the ISO14001:2004 standard. Other international standard conformance certification is in progress.

Contact Us

If you have any problem or requirement when using our products or this manual, please contact **RIGOL**.

E-mail: service@rigol.com Website: www.rigol.com

Document Overview

This manual guides users to correctly calibrate **RIGOL** DG1000 series dual-channel function/arbitrary waveform generator.

Main topics in this manual:

- Calibration Instruction
- Testing Devices and Notice
- Calibration Process
- To Save the Calibration Data
- To Restore Initial Calibration Value
- Calibration Prompting Messages

Format Conventions in this Manual:

Front Panel Key: denoted by "Text Box + Key Name (Bold)", for example, Utility. Menu Softkey: denoted by "Character Shading + Menu Word (Bold)", for example, I/O.

Operation Step: denoted by an arrow " \rightarrow ", for example, Utility $\rightarrow 1/0$.

Content Conventions in this Manual:

DG1000 series dual-channel function/arbitrary waveform generator includes two models (DG1022 and DG1022A). The introductions in this manual are applicable to all the models of the DG1000 series unless otherwise noted.

Model	Channels	Max. Frequency	Sample Rate
DG1022	2	20 MHz	100 MSa/s
DG1022A	2	25 MHz	100 MSa/s

Contents

Guaranty and DeclarationI
Document Overview II
Chapter 1 Calibration Instruction1-11.1 Calibration Time Interval1-11.2 Recommended Adjustments1-11.3 Calibration Time1-11.4 Calibration Security1-11.5 Basic Calibration/Adjustment Procedures1-21.6 To Stop the Calibration1-3
Chapter 2 Testing Devices and Notice2-12.1 Testing Devices2-12.2 Testing Notice2-1
Chapter 3 Calibration Process3-13.1 Self-test3-23.2 Frequency (Internal Timebase) Adjustment3-33.3 CH1 AC Amplitude Adjustment3-43.4 CH1 Offset DAC3-63.5 CH1 Low Frequency Flatness Adjustment3-73.6 CH1 Output Impedance Adjustment3-93.7 CH1 0 dB Output Flatness Adjustment3-113.8 CH1 +10 dB Output Flatness Adjustment3-133.9 CH1 +20 dB Output Flatness Adjustment3-153.10 CH2 AC Amplitude Adjustment3-173.11 CH2 Offset DAC3-183.12 CH2 Low Frequency Flatness Adjustment3-193.13 CH2 Output Impedance Adjustment3-213.14 CH2 0 dB Output Flatness Adjustment3-213.15 CH2 +10 dB Output Flatness Adjustment3-213.14 CH2 0 dB Output Flatness Adjustment3-233.15 CH2 +10 dB Output Flatness Adjustment3-233.17 Phase Adjustment3-233.17 Phase Adjustment3-23
Chapter 4 To Save the Calibration Data4-1
Chapter 5 To Restore the Initial Calibration Value5-1
Chapter 6 Calibration Prompting Messages6-1

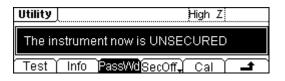
Chapter 1 Calibration Instruction

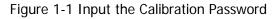
1.1 Calibration Time Interval

Regular calibration should be performed on your instrument according to your measurement accuracy requirement. A one-year calibration time interval can fulfill most of your applications; a calibration time interval longer than one year can not ensure the accuracy.

1.2 Recommended Adjustments

No matter how long is your calibration time interval, **RIGOL** recommends that you perform complete readjustment within the calibration time limit, which can ensure the performance of the signal generator until the next calibration.


1.3 Calibration Time


The signal generator can perform auto calibration under the control of the PC. A complete calibration and verification test under the control of the PC takes about 30 minutes if the instrument has already been warmed up (refer to "**Testing Notice**"). It takes about 2.5 hours if you use the recommended testing instruments to adjust the instrument manually. Note that this manual only introduces manual calibration.

1.4 Calibration Security

The calibration password is used to prevent accidental and unauthorized calibration of the signal generator. The instrument is encrypted when you use it for the first time and you need to enter the correct password to decrypt the signal generator to perform calibration.

Press **Utility** \rightarrow **Test/Cal** \rightarrow **PassWd** to input the correct password and the system displays "The instrument now is UNSECURED". At this point, **SecOn** switches to **SecOff** as shown in the figure below.

The password is set to "12345" when the signal generator is deliveried from the factory. This password is stored in the non-volatile memory and will not change at power-off or after remote interface reset.

1.5 Basic Calibration/Adjustment Procedures

The recommended procedures of instrument calibration are presented below. This is only a general description of a complete calibration and detailed operations will be presented in "**Calibration Process**".

- 1. Read the "Testing Notice".
- 2. Decrypt the signal generator (refer to "Calibration Security").
- 3. Press **Test/Cal** (refer to Figure 1-1) to enter the calibration starting menu.

Utility	High Z
	1
Step í Start í	ľ ľ ľ Stopľ

Figure 1-2 Calibration Starting

Table 1-1 Calibration Starting Menu

Menu	Description	
Step	Select the step of the calibration operation to be performed.	
Start	Start to perform the calibration step.	
Stop	Stop the calibration step and return to the previous menu.	

- Select Step and use the knob or keyboard to input the calibration step (refer to Table 3-1) and the default is "1". If only the specified N step of the calibration is needed, input the desired calibration step.
- 5. Select **Start** to open the calibration parameter setting menu.

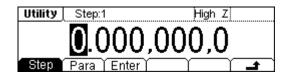


Figure 1-3 Calibration Parameter Setting

Menu	Description	
Stop	Select the step of the calibration operation to be	
Step	performed.	
Para	Press this key and input the measured value.	
Entor	Finish the value input of the current step and enter the	
Enter	next step.	

 Table 1-2 Calibration Parameter Setting Menu

- 6. The signal generator displays the parameters currently need to be calibrated together with their default output signal values. To finish a step of calibration, you only need to read the reading on the testing instrument and press **Para** to input the reading. Then, the signal generator will adjust automatically.
- 7. Press **Enter** and the instrument enters the next calibration step automatically.

Тір

Select in the "Calibration Parameter Setting" menu to cancel the current calibration. Select **Stop** in the "Calibration Starting" menu to stop the calibration. The instrument will be encrypted automatically after the calibration finishes.

1.6 To Stop the Calibration

You may need to stop the calibration during the calibration process. Thus you can power off the instrument or press any of the other function keys at the panel to stop the calibration at any time.

You need to perform the calibration again if the instrument is powered off during the calibration. The calibration data will be stored in the internal memory if you press any of the other function keys to stop the calibration and you can re-enter the calibration interface to execute other calibration steps. The signal generator will store the calibration constants to the Flash only after you execute the **"To Save the Calibration Data**" operation.

Notice

If you stop the calibration when the signal generator is writing the calibration constant to the Flash, you may lost all the calibration constants and you need to perform all the calibrations again.

Chapter 2 Testing Devices and Notice

2.1 Testing Devices

The testing devices recommended to be used to perform the calibration are as shown in the table below. If you do not have the specified device, please use alternative testing devices with the same accuracy.

Device	Specifications	Recommended Model	Usage ^[1]
Oscilloscope	Bandwidth: 200 MHz Sample Rate: 2 GSa/s	RIGOL DS2000A	Р, Т
Digital Multimeter (DMM)	AC Volts (True-RMS, AC Coupled) Accuracy: ±0.06% (300 kHz) DC Volts Accuracy: 0.0015% Resistance Accuracy: 0.002%	RIGOL DM3068	Р, Т
Frequency Counter	Accuracy: 0.1 ppm	Agilent 53131A	Р, Т
Power Meter	Absolute Accuracy: ±0.02dB (log) or ±0.5% (linear) Relative Accuracy: ±0.04dB (log) or ±1.0% (linear)	Agilent E4418B	Р, Т

Table 2-1 Recommended Testing Devices

Note^[1]: P = Performance Verification, T = Troubleshooting.

2.2 Testing Notice

To get the optimum effect, all the test steps must comply with the following advices:

- 1. Make sure the temperature of the environment is between 18° C and 28° C. The calibration should be performed in 23° C ±1°C in ideal situation.
- 2. Make sure the relative humidity of the environment is lower than 80%.
- 3. Make sure the instrument has been working continuously for 1 hour.
- 4. The cable used in the test should be as short as possible and the impedance of the cable should meet the requirement.
- 5. Only use RG-58 or similar 50 Ω cables.

Chapter 3 Calibration Process

The calibration process contains 17 items (3.1 to 3.17). When the calibration begins, you must calibrate each item in sequence from 3.1 to 3.17 but you can start to calibrate from any steps in a single item.

	Calibration	Calibration	
Channel	Steps	Steps	Name of the Calibration Items
	(DG1022)	(DG1022A)	
	1	1	Self-test
CH1&CH2	2~3	2~3	Frequency (Internal Timebase)
			Adjustment
	4~22	4~22	AC Amplitude (High-impedance)
		0.0 05	Adjustment
	23~35	23~35	Offset DAC
CH1	36~57	36~57	Low Frequency Flatness Adjustment
СПІ	58~79	58~79	Output Impedance Adjustment
	80~89	80~91	0 dB Output Flatness Adjustment
	90~99	92~103	+10 dB Output Flatness Adjustment
	100~109	104~115	+20 dB Output Flatness Adjustment
	304~319	304~319	AC Amplitude (High-impedance)
			Adjustment
	323~333	323~333	Offset DAC
CH2	336~350	336~350	Low Frequency Flatness Adjustment
	355~373	355~373	Output Impedance Adjustment
	380~389	380~391	0 dB Output Flatness Adjustment
	390~399	392~403	+10 dB Output Flatness Adjustment
	280~281	280~281	Frequency (External Timebase)
CH1&CH2	200 201	200 201	Adjustment
	285~293	285~293	Phase Adjustment
GITIAGITZ	254	254	To Save the Calibration Data
	255 255		To Restore the Initial Calibration
	200	255	Value

Table 3-1 Calibration Steps Preview

3.1 Self-test

The first step of the calibration is self-test which is used to check whether the signal generator is working normally.

Press Utility → Test/Cal → PassWd and enter the password to decrypt the instrument. Then, press Cal → Start to perform the calibration from the first step.

Table 3-2 Self-test Step

Step	Description	
1	Perform self-test. The main output is disabled automatically	
1	during the self-test.	

2. To continue the calibration, the instrument must be repaired if the self-test of the signal generator fails.

3.2 Frequency (Internal Timebase) Adjustment

The signal generator stores a frequency calibration constant to make sure that the output is 10 MHz.

1. Connect the frequency counter and the signal generator as shown in the figure below. Set the scale accuracy of the frequency counter to 0.1 ppm and its input impedance to 50Ω (connect an external 50Ω terminal if your frequency counter does not have a 50Ω input impedance).

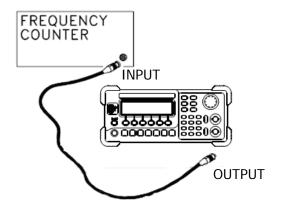


Figure 3-1 Frequency (Internal Timebase) Adjustment Connection

- 2. Use the frequency counter to measure the frequency of the output signal.
- 3. According to the steps in the table below, press **Para** and use the keyboard on the panel to input the measurement value in step 2.

Expected Value			Description
Step	Frequency	Amplitude	
2	<10 MHz	1 Vpp	Output frequency is slightly less than 10 MHz (e.g. 9,999,945.73 Hz)
3 ^[1]	ENDSTEP_CAL_FREQ (Frequency adjustment finishes)		

 Table 3-3 Frequency (Internal Timebase) Adjustment Steps

3.3 CH1 AC Amplitude Adjustment

1. Connect the DMM and the signal generator as shown in the figure below.

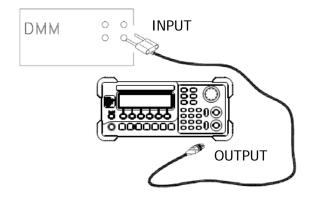


Figure 3-2 AC Amplitude Adjustment Connection

- 2. Use the DMM to measure the AC voltage output from the signal generator.
- 3. Perform the measurements in sequence according to the steps in the table below, and select **Para** to input the measurement value at each step.

Expected Value			Description
Step	AC Voltage	Output Impedance	
4	0.021 Vpp (0.0074 Vrms)	HighZ	-30 dB output range
5	0.038 Vpp (0.0134 Vrms)	HighZ	-30 dB output range
6	0.055 Vpp (0.0194 Vrms)	HighZ	-30 dB output range
7	0.070 Vpp (0.0248 Vrms)	HighZ	-30 dB output range
8	0.13 Vpp (0.046 Vrms)	HighZ	-30 dB output range
9	0.19 Vpp (0.0672 Vrms)	HighZ	-30 dB output range
10	0.21 Vpp (0.0743 Vrms)	HighZ	-10 dB output range
11	0.40 Vpp (0.1414 Vrms)	HighZ	-10 dB output range
12	0.59 Vpp (0.2086 Vrms)	HighZ	-10 dB output range
13	0.61 Vpp (0.2157 Vrms)	HighZ	0 dB output range
14	1.26 Vpp (0.4455 Vrms)	HighZ	0 dB output range
15	1.9 Vpp (0.6719 Vrms)	HighZ	0 dB output range
16	2.1 Vpp (0.7426 Vrms)	HighZ	+10 dB output range
17	4 Vpp (1.414 Vrms)	HighZ	+10 dB output range
18	5.9 Vpp (2.086 Vrms)	HighZ	+10 dB output range
19	6.5 Vpp (2.298 Vrms)	HighZ	+20 dB output range
20	13.2 Vpp (4.667 Vrms)	HighZ	+20 dB output range

Table 3-4 AC Amplitude Adjustment Steps

21	19.9 Vpp (7.036 Vrms)	HighZ	+20 dB output range
22 ^[1]		(AC amplitude	adjustment finishes)

22^[1] ENDSTEP_CAL_ACAMPLITUDE (AC amplitude adjustment finishes) Note^[1]: this step is only for display and you need not to input any value. Press **Enter** to enter the next step.

3.4 CH1 Offset DAC

Offset DAC is used to calibrate the DC offset of the main DAC output and needs to calibrate all the attenuation channels with high output impedance. The offset coefficient is obtained through two measurements (first measure the positive level output from the DAC and then measure the negative level output from the DAC). Thus, such testing steps always appear in pairs.

1. Connect the DMM and the signal generator as shown in the figure below.

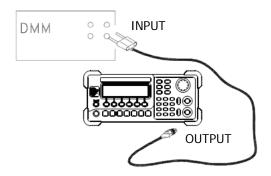


Figure 3-3 Offset DAC Connection

- 2. Use the DMM to measure the DC voltage output from the signal generator.
- 3. Perform the measurements in sequence according to the steps in the table below, and select **Para** to input the measurement value at each step.

Expect	Expected Value		Description
Step	DC Voltage	Output Impedance	
23	+0.025 V	HighZ	-30 dB output range
24	-0.025 V	HighZ	-30 dB output range
25	+0.0625 V	HighZ	-20 dB output range
26	-0.0625 V	HighZ	-20 dB output range
27	+0.25 V	HighZ	-10 dB output range
28	-0.25 V	HighZ	-10 dB output range
29	+0.625 V	HighZ	0 dB output range
30	-0.625 V	HighZ	0 dB output range
31	+2.5 V	HighZ	+10 dB output range
32	-2.5 V	HighZ	+10 dB output range
33	+6.25 V	HighZ	+20 dB output range
34	-6.25 V	HighZ	+20 dB output range
35[1]	ENDSTEP_CAL_OFFSETDAC (Offset DAC finishes)		

Table 3-5 Offset DAC Steps

3.5 CH1 Low Frequency Flatness Adjustment

Low frequency flatness adjustment is used to adjust the 3 attenuation channels (using elliptical filter, with low passband ripples, applicable to Sine and Square) and the other two amplification channels (using linear phase filter, applicable to Ramp, Noise and arbitrary waveforms) of the signal generator.

1. Connect the DMM and the signal generator as shown in the figure below. Set the DMM to measure the Vrms voltage value.

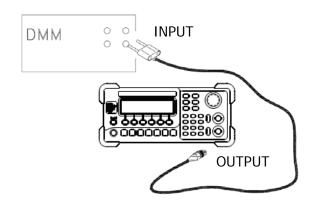


Figure 3-4 Low Frequency Flatness Adjustment Connection

- 2. Use the DMM to measure the Sine waveform output from the signal generator.
- 3. Perform the measurements in sequence according to the steps in the table below, and select **Para** to input the measurement value at each step.

Outp	ut Sign	al of the	Description		
Step	Туре	Output	Frequency	Amplitude	
36	Sine	HighZ	1 kHz	0.56 Vrms	Flatness for 0 dB, Linear Phase Filter
37	Sine	HighZ	100 Hz	0.56 Vrms	Flatness for 0 dB, Linear Phase Filter
38	Sine	HighZ	10 kHz	0.56 Vrms	Flatness for 0 dB, Linear Phase Filter
39	Sine	HighZ	30 kHz	0.56 Vrms	Flatness for 0 dB, Linear Phase Filter
40	Sine	HighZ	60 kHz	0.56 Vrms	Flatness for 0 dB, Linear Phase Filter
41	Sine	HighZ	80 kHz	0.56 Vrms	Flatness for 0 dB, Linear Phase Filter

Table 3-6 Low Frequency Flatness Adjustment Steps

42	Sine	HighZ	100 kHz	0.56 Vrms	Flatness for 0 dB,		
72	Onic	riigiiz		0.00 11113	Linear Phase Filter		
43	Sine	HighZ	1 kHz	1.7 Vrms	Flatness for +10 dB,		
43	JIIC	Tilghz		1.7 1113	Linear Phase Filter		
44	Sine	HighZ	100 Hz	1.7 Vrms	Flatness for +10 dB,		
44	JITE	Tilghz	100 112	1.7 11113	Linear Phase Filter		
45	Sine	HighZ	10 kHz	1.7 Vrms	Flatness for +10 dB,		
45	Sine	Tiigiiz		1.7 VIIIIS	Linear Phase Filter		
46	Sine	Lligh7	30 kHz	1.7 Vrms	Flatness for +10 dB,		
40	Sine	HighZ		1.7 VIIIIS	Linear Phase Filter		
47	Sine	Lligh7	60 kHz	1.7 Vrms	Flatness for +10 dB,		
47	Sine	HighZ		1.7 VIIIIS	Linear Phase Filter		
48	Sine	Lligh7	80 kHz	1.7 Vrms	Flatness for +10 dB,		
40	Sine	HighZ		1.7 VIIIIS	Linear Phase Filter		
49	Sine	Lligh7	100 kHz	1.7 Vrms	Flatness for +10 dB,		
49	Sine	HighZ		1.7 VIIIIS	Linear Phase Filter		
50	Sine	Lligh7	1 kHz	5.6 Vrms	Flatness for +20 dB,		
50	Sine	HighZ		5.0 VIIIIS	Linear Phase Filter		
51	Sine	Lligh7	100 Hz	5.6 Vrms	Flatness for +20 dB,		
51	Sine	HighZ		5.0 VIIIIS	Linear Phase Filter		
52	Cino	Lliah 7	10 kHz		Flatness for +20 dB,		
52	Sine	HighZ	TO KHZ	5.6 Vrms	Linear Phase Filter		
53	Cino	Lliah 7	20 611-		Flatness for +20 dB,		
53	Sine	HighZ	30 kHz	5.6 Vrms	Linear Phase Filter		
Γ 4	Cime	Lilarh 7			Flatness for +20 dB,		
54	Sine	HighZ	60 kHz	5.6 Vrms	Linear Phase Filter		
	C:	LU: ula 7			Flatness for +20 dB,		
55	Sine	HighZ	80 kHz	5.6 Vrms	Linear Phase Filter		
E 4	Circo	Lliah 7	100 141-		Flatness for +20 dB,		
56	Sine	HighZ	100 kHz	5.6 Vrms	Linear Phase Filter		
57 ^[1]	ENDS	TEP_CAL_I	OWFREQFLA	AT (Low freque	ncy flatness adjustment		
5/5	finishe				· ·		
NI [1	this stop is only for display and you need not to input any value. Pross Enter to onto						

3.6 CH1 Output Impedance Adjustment

Output impedance adjustment is used to adjust the output impedance. The measurement of the output impedance constant uses the distortion filter of the signal generator and all the six attenuation/amplification channels of the signal generator.

1. Set the DMM to use AC voltage for measurement. The (CH1) output terminal of the signal generator is connected to the AC voltage intput terminal of the DMM via a 50 Ω impedance adapter. The connecting method is as shown in the figure below.

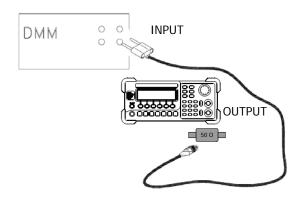


Figure 3-5 Output Impedance Adjustment Connection

- 2. Use the DMM to measure the output voltage of the signal generator according to each of the output measurements in Table 3-7. The internal resistance of the signal generator is obtained indirectly through the voltage measurement and the expected measurement value should be 50 Ω .
- 3. Perform the measurements in sequence according to the steps in the table below, and select **Para** to input the measurement value at each step.

Step	Expected Value	Description (Signal Generator Output)
58	50 Ω	0.038 Vpp (0.0134 Vrms)
59	50 Ω	0.125 Vpp (0.0442 Vrms)
60	50 Ω	0.375 Vpp (0.1326 Vrms)
61	50 Ω	1 Vpp (0. 3536 Vrms)
62	50 Ω	1.5 Vpp (0. 5304 Vrms)
63	50 Ω	3 Vpp (1.060 Vrms)
64	50 Ω	4.5 Vpp (1.591 Vrms)
65	50 Ω	6.5 Vpp (2.298 Vrms)
66	50 Ω	11 Vpp (3.889 Vrms)

Table 3-7 Output Impedance Adjustment Steps

67	50 Ω	0 Vpp (0 Vrms)			
68	50 Ω	17 Vpp (6.011 Vrms)			
69	50 Ω	8.5 Vpp (3.005 Vrms)			
70	50 Ω	5.5 Vpp (1.944 Vrms)			
71	50 Ω	3.25 Vpp (1.149 Vrms)			
72	50 Ω	2.25 Vpp (0.7956 Vrms)			
73	50 Ω	1.5 Vpp (0.5304 Vrms)			
74	50 Ω	0.75 Vpp (0.2652 Vrms)			
75	50 Ω	0.5 Vpp (0.1768 Vrms)			
76	50 Ω	0.187 Vpp (0.0661 Vrms)			
77	50 Ω	0.0625 Vpp (0.0221 Vrms)			
78	50 Ω	0.019 Vpp (0.0067 Vrms)			
79[1]		ENDSTEP_CAL_IMPENDANCE (Output impedance adjustment			
/ 7	finishes)				

3.7 CH1 0 dB Output Flatness Adjustment

1. Connect the power meter and the signal generator as shown in the figure below. Set the output impedance of the signal generator to 50 Ω .

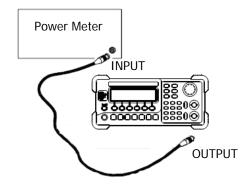


Figure 3-6 Output Flatness Adjustment Connection

- 2. Use the power meter to measure the amplitude (dBm) value of the output signal of the signal generator.
- 3. Perform the measurements in sequence according to the steps in the table below, and select **Para** to input the measurement value at each step.

Outpu	t Signal	of the Sig	Description		
Step	Туре	Output	Frequency	Amplitude	
80	Sine	50 Ω	100 kHz	2 dBm	Flatness for 0 dB, Linear Phase Filter
81	Sine	50 Ω	500 kHz	2 dBm	Flatness for 0 dB, Linear Phase Filter
82	Sine	50 Ω	1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter
83	Sine	50 Ω	5 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter
84	Sine	50 Ω	10.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter
85	Sine	50 Ω	11.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter
86	Sine	50 Ω	15.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter
87	Sine	50 Ω	18.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter

Table 3-8 0 dB Output Flatness Adjustment Steps (DG1022)

88	Sine	50 Ω	20.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter	
89 ^[1]	ENDSTEP_CAL_0dBFLAT (0 dB output flatness adjustment finishes)					

Table 3-9 0 dB Output Flatness Adjustment Steps (DG1022A)

Outpu	ut Signal	of the Si	Description				
Step	Туре	Output	Frequency	Amplitude			
80	Sine	50 Ω	100 kHz	2 dBm	Flatness for 0 dB, Linear Phase Filter		
81	Sine	50 Ω	500 kHz	2 dBm	Flatness for 0 dB, Linear Phase Filter		
82	Sine	50 Ω	1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter		
83	Sine	50 Ω	5 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter		
84	Sine	50 Ω	10.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter		
85	Sine	50 Ω	11.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter		
86	Sine	50 Ω	15.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter		
87	Sine	50 Ω	18.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter		
88	Sine	50 Ω	20.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter		
89	Sine	50 Ω	23.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter		
90	Sine	50 Ω	25.0 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter		
91 ^[1]							

3.8 CH1 +10 dB Output Flatness Adjustment

- 1. Connect the power meter and the signal generator as shown in Figure 3-6. Set the output impedance of the signal generator to 50 Ω .
- 2. Use the power meter to measure the amplitude (dBm) value of the output signal of the signal generator.
- 3. Perform the measurements in sequence according to the steps in the table below, and select **Para** to input the measurement value at each step.

Outpu	t Signa	l of the	Description			
Step	Туре	Output	Frequency	Amplitude		
90	Sine	50 Ω	100 kHz	12 dBm	Flatness for 10 dB, Linear Phase Filter	
91	Sine	50 Ω	500 kHz	12 dBm	Flatness for 10 dB, Linear Phase Filter	
92	Sine	50 Ω	1 MHz	12 dBm	Flatness for 10 dB, Linear Phase Filter	
93	Sine	50 Ω	5 MHz	12 dBm	Flatness for 10 dB, Linear Phase Filter	
94	Sine	50 Ω	10.1 MHz	12 dBm	Flatness for 10 dB, Linear Phase Filter	
95	Sine	50 Ω	11.1 MHz	12 dBm	Flatness for 10 dB, Linear Phase Filter	
96	Sine	50 Ω	15.1 MHz	12 dBm	Flatness for 10 dB, Linear Phase Filter	
97	Sine	50 Ω	18.1 MHz	12 dBm	Flatness for 10 dB, Linear Phase Filter	
98	Sine	50 Ω	20.1 MHz	12 dBm	Flatness for 10 dB, Linear Phase Filter	
99 ^[1]	ENDETED CAL 10dDELAT (, 10 dD output flotnood adjustment					

Table 3-10 +10 dB Output Flatness Adjustment Steps (DG1022)

Table 3-11 +10 dB Output	ut Flatness Ad	justment Step	os (DG1022A)
--------------------------	----------------	---------------	--------------

Output Signal of the Signal Generator					Description
Step	Туре	Output	Frequency	Amplitude	
92	Sine	50 Ω	100 kHz	12 dBm	Flatness for 10 dB, Linear Phase Filter
93	Sine	50 Ω	500 kHz	12 dBm	Flatness for 10 dB, Linear Phase Filter
94	Sine	50 Ω	1 MHz	12 dBm	Flatness for 10 dB, Linear Phase Filter

95	Sine	50 Ω	5 MHz	12 dBm	Flatness for 10 dB, Linear Phase Filter	
96	Sine	50 Ω	10.1 MHz	12 dBm	Flatness for 10 dB, Linear Phase Filter	
97	Sine	50 Ω	11.1 MHz	12 dBm	Flatness for 10 dB, Linear Phase Filter	
98	Sine	50 Ω	15.1 MHz	12 dBm	Flatness for 10 dB, Linear Phase Filter	
99	Sine	50 Ω	18.1 MHz	12 dBm	Flatness for 10 dB, Linear Phase Filter	
100	Sine	50 Ω	20.1 MHz	12 dBm	Flatness for 10 dB, Linear Phase Filter	
101	Sine	50 Ω	23.1 MHz	12 dBm	Flatness for 10 dB, Linear Phase Filter	
102	Sine	50 Ω	25.0 MHz	12 dBm	Flatness for 10 dB, Linear Phase Filter	
103 ^[1]	I] ENDSTEP_CAL_10dBFLAT (+10 dB output flatness adjustment finishes)					

3.9 CH1 + 20 dB Output Flatness Adjustment

- 1. Connect the power meter and the signal generator as shown in Figure 3-6. Set the output impedance of the signal generator to 50 Ω .
- 2. Use the power meter to measure the amplitude (dBm) value of the output signal of the signal generator.
- 3. Perform the measurements in sequence according to the steps in the table below, and select **Para** to input the measurement value at each step.

Outpu	t signa	l of the si	tor	Description		
Step	Туре	Output	Frequency	Amplitude		
100	Sine	50 Ω	100 kHz	17.96 dBm	Flatness for 20 dB,	
100	Sinc	30 32		17.70 0011	Linear Phase Filter	
101	Sine	50 Ω	500 kHz	17.96 dBm	Flatness for 20 dB,	
101	Sinc	30 32		17.70 0011	Linear Phase Filter	
102	Sine	50 Ω	1 MHz	17.96 dBm	Flatness for 20 dB,	
102	Sinc	30 32		17.70 0011	Linear Phase Filter	
103	Sine	Sine 50 Ω 5 MHz 17.96 dBm	17.96 dBm	Flatness for 20 dB,		
105	Sinc	30 32	5 10112	17.70 0011	Linear Phase Filter	
104	Sine	50 Ω	10.1 MHz	17.96 dBm	Flatness for 20 dB,	
104	Sinc				Linear Phase Filter	
105	Sine	50 Ω	11.1 MHz	17.96 dBm	Flatness for 20 dB,	
100	Sinc	00 36		17.70 0011	Linear Phase Filter	
106	Sine	50 Ω	15.1 MHz	17.96 dBm	Flatness for 20 dB,	
100	Sinc	50 JE	13.1 10.12	17.70 0011	Linear Phase Filter	
107	Sine	50 Ω	18.1 MHz	17.96 dBm	Flatness for 20 dB,	
107	Sinc	30 32		17.70 0011	Linear Phase Filter	
108	Sine	ie 50 Ω	20.1 MHz	17.96 dBm	Flatness for 20 dB,	
100					Linear Phase Filter	
109 ^[1]		DSTEP_CAL_20dBFLAT (+20 dB output flatness adjustment				
,	finishes)					

Table 3-12 +20 dB Output Flatness Adjustment Steps (DG1022)

Table 3-13 +20 dB Out	put Flatness Ad	justment Steps	(DG1022A)
			· · · /

	Output signal of the signal Generator Description						
Outpu	t signa	i or the si	gnal Genera	lor	Description		
Step	Туре	Output	Frequency	Amplitude			
104	Sine	50 Ω	100 kHz	17.96 dBm	Flatness for 20 dB, Linear Phase Filter		
105	Sine	50 Ω	500 kHz	17.96 dBm	Flatness for 20 dB, Linear Phase Filter		
106	Sine	50 Ω	1 MHz	17.96 dBm	Flatness for 20 dB, Linear Phase Filter		

107	Sine	50 Ω	5 MHz	17.96 dBm	Flatness for 20 dB, Linear Phase Filter	
108	Sine	50 Ω	10.1 MHz	17.96 dBm	Flatness for 20 dB, Linear Phase Filter	
109	Sine	50 Ω	11.1 MHz	17.96 dBm	Flatness for 20 dB, Linear Phase Filter	
110	Sine	50 Ω	15.1 MHz	17.96 dBm	Flatness for 20 dB, Linear Phase Filter	
111	Sine	50 Ω	18.1 MHz	17.96 dBm	Flatness for 20 dB, Linear Phase Filter	
112	Sine	50 Ω	20.1 MHz	17.96 dBm	Flatness for 20 dB, Linear Phase Filter	
113	Sine	50 Ω	23.1 MHz	17.96 dBm	Flatness for 20 dB, Linear Phase Filter	
114	Sine	50 Ω	25.0 MHz	17.96 dBm	Flatness for 20 dB, Linear Phase Filter	
115 ^[1]	ENDSTEP_CAL_20dBFLAT (+20 dB output flatness adjustment finishes)					

3.10 CH2 AC Amplitude Adjustment

1. Connect the DMM and the signal generator as shown in the figure below.

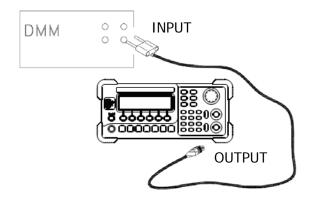


Figure 3-7 AC Amplitude Adjustment Connection

- 2. Use the DMM to measure the AC voltage output from the signal generator.
- 3. Perform the measurements in sequence according to the steps in the table below, and select **Para** to input the measurement value at each step.

Expect	ed Value	Description	
Step	AC Voltage	Output Impedance	
304	0.021 Vpp (0.0074 Vrms)	HighZ	-30 dB output range
305	0.038 Vpp (0.0134 Vrms)	HighZ	-30 dB output range
306	0.055 Vpp (0.0194 Vrms)	HighZ	-30 dB output range
307	0.070 Vpp (0.0248 Vrms)	HighZ	-20 dB output range
308	0.13 Vpp (0.046 Vrms)	HighZ	-20 dB output range
309	0.19 Vpp (0.0672 Vrms)	HighZ	-20 dB output range
310	0.21 Vpp (0.0743 Vrms)	HighZ	-10 dB output range
311	0.40 Vpp (0.1414 Vrms)	HighZ	-10 dB output range
312	0.59 Vpp (0.2086 Vrms)	HighZ	-10 dB output range
313	0.61 Vpp (0.2157 Vrms)	HighZ	0 dB output range
314	1.26 Vpp (0.4455 Vrms)	HighZ	0 dB output range
315	1.9 Vpp (0.6719 Vrms)	HighZ	0 dB output range
316	2.1 Vpp (0.7426 Vrms)	HighZ	+10 dB output range
317	4 Vpp (1.414 Vrms)	HighZ	+10 dB output range
318	5.9 Vpp (2.086 Vrms)	+10 dB output range	
319 ^[1]	ENDSTEP_CAL_ACAMPLIT	UDE (AC amp	litude adjustment finishes)
Note ^[1] : th	his step is only for display and you	need not to inp	ut any value. Press Enter to ente

Table 3-14 AC Amplitude Adjustment Steps

3.11 CH2 Offset DAC

Offset DAC is used to calibrate the DC offset of the main DAC output and needs to calibrate all the attenuation channels with high output impedance. The offset coefficient is obtained through two measurements (first measure the positive level output from the DAC and then measure the negative level output from the DAC). Thus, such testing steps always appear in pairs.

1. Connect the DMM and the signal generator as shown in the figure below.

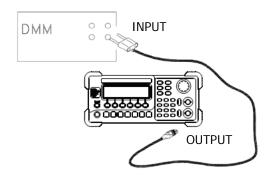


Figure 3-8 Offset DAC Connection

- 2. Use the DMM to measure the DC voltage output from the signal generator.
- 3. Perform the measurements in sequence according to the steps in the table below, and select **Para** to input the measurement value at each step.

	ted Value		Description
Step	DC Level	Output Impedance	
323	+0.025 V	HighZ	-30 dB output range
324	-0.025 V	HighZ	-30 dB output range
325	+0.0625 V	HighZ	-20 dB output range
326	-0.0625 V	HighZ	-20 dB output range
327	+0.25 V	HighZ	-10 dB output range
328	-0.25 V	HighZ	-10 dB output range
329	+0.625 V	HighZ	0 dB output range
330	-0.625 V	HighZ	0 dB output range
331	+2.5 V	HighZ	+10 dB output range
332	-2.5 V	HighZ	+10 dB output range
333 ^[1]	ENDSTEP_C	AL_OFFSETDAC (Offs	set DAC finishes)

Table 3-15 Offset DAC Steps

3.12 CH2 Low Frequency Flatness Adjustment

Low frequency flatness adjustment is used to adjust the 3 attenuation channels (using elliptical filter, with low passband ripples, applicable to Sine and Square) and the other two amplification channels (using linear phase filter, applicable to Ramp, Noise and arbitrary waveforms) of the signal generator.

1. Connect the DMM and the signal generator as shown in the figure below. Set the DMM to measure the Vrms voltage value.

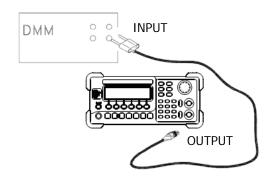


Figure 3-9 Low Frequency Flatness Adjustment Connection

- 2. Use the DMM to measure the Sine waveform output from the signal generator.
- 3. Perform the measurements in sequence according to the steps in the table below, and select **Para** to input the measurement value at each step.

Outpu	it Signal	Description			
Step	Туре	Output	Frequency	Amplitude	
336	Sine	HighZ	1 kHz	0.56 Vrms	Flatness for 0 dB, Linear Phase Filter
337	Sine	HighZ	100 Hz	0.56 Vrms	Flatness for 0 dB, Linear Phase Filter
338	Sine	HighZ	10 kHz	0.56 Vrms	Flatness for 0 dB, Linear Phase Filter
339	Sine	HighZ	30 kHz	0.56 Vrms	Flatness for 0 dB, Linear Phase Filter
340	Sine	HighZ	60 kHz	0.56 Vrms	Flatness for 0 dB, Linear Phase Filter
341	Sine	HighZ	80 kHz	0.56 Vrms	Flatness for 0 dB, Linear Phase Filter
342	Sine	HighZ	100 kHz	0.56 Vrms	Flatness for 0 dB, Linear Phase Filter

Table 3-16 Low Frequency Flatness Adjustment Steps

					Flatpace for 10 dD		
343	Sine	HighZ	1 kHz	1.7 Vrms	Flatness for +10 dB,		
0.0		·			Linear Phase Filter		
244	Cino	Lliah 7	100 11-	1 7 Vrma	Flatness for +10 dB,		
344	Sine	HighZ	100 Hz	1.7 Vrms	Linear Phase Filter		
245	Cino	lliah7	10 101-	17 \/rma	Flatness for +10 dB,		
345	Sine	HighZ	10 kHz	1.7 Vrms	Linear Phase Filter		
246	Sino	lliah7	30 kHz	1 7 Vrmc	Flatness for +10 dB,		
346	46 Sine	HighZ	30 KHZ	1.7 Vrms	Linear Phase Filter		
247	Cino	lliah 7	(0 kUz	17. //	Flatness for +10 dB,		
347	Sine	HighZ	60 kHz	1.7 Vrms	Linear Phase Filter		
240	Circo	l llab 7	00 611-	17)/////////	Flatness for +10 dB,		
348	Sine	HighZ	80 kHz	1.7 Vrms	Linear Phase Filter		
2.40	Chara	Liberta 7	100 111-	1 7 \ /	Flatness for +10 dB,		
349	Sine	HighZ	100 kHz	1.7 Vrms	Linear Phase Filter		
350 ^[1]	ENDSTE	ENDSTEP_CAL_LOWFREQFLAT (Low frequency flatness adjustment					
350	finishes)		•			

3.13 CH2 Output Impedance Adjustment

Output impedance adjustment is used to adjust the output impedance. The measurement of the output impedance constant uses the distortion filter and all the six attenuation/amplification channels of the signal generator.

1. Set the DMM to use AC voltage for measurement. The (CH2) output terminal of the signal generator is connected to the AC voltage intput terminal of the DMM via a 50 Ω impedance adapter. The connecting method is as shown in the figure below.

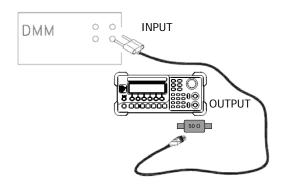


Figure 3-10 Output Impedance Adjustment Connection

- 2. Use the DMM to measure the output voltage of the signal generator according to each of the output measurements in Table 3-17. The internal resistance of the signal generator is obtained indirectly through the voltage measurement and the expected measurement value should be 50 Ω .
- 3. Perform the measurements in sequence according to the steps in the table below, and select **Para** to input the measurement value at each step.

Step	Expected Value	Description (Signal Generator Output)
355	50 Ω	0.038 Vpp (0.0134 Vrms)
356	50 Ω	0.125 Vpp (0.0442 Vrms)
357	50 Ω	0.375 Vpp (0.1326 Vrms)
358	50 Ω	1 Vpp (0.3536 Vrms)
359	50 Ω	1.5 Vpp (0.5304 Vrms)
360	50 Ω	3 Vpp (1.060 Vrms)
361	50 Ω	4.5 Vpp (1.591 Vrms)
362	50 Ω	0 Vpp (0 Vrms)
363	50 Ω	2.25 Vpp (0.7956 Vrms)
364	50 Ω	1.5 Vpp (0.5304 Vrms)

Table 3-17 Output Impedance Adjustment Steps

365	50 Ω	0.75 Vpp (0.2652 Vrms)			
366	50 Ω	0.5 Vpp (0.1768 Vrms)			
367	50 Ω	0.187 Vpp (0.0661 Vrms)			
368	50 Ω	0.0625 Vpp (0.0221 Vrms)			
369	50 Ω	0.019 Vpp (0.0067 Vrms)			
370	50 Ω	0 Vpp (0 Vrms)			
371	50 Ω	2 Vpp (0.7072 Vrms)			
372	50 Ω	2 Vpp (0.7072 Vrms)			
373 ^[1]	ENDSTEP_CAL_IMP	ENDSTEP_CAL_IMPENDANCE (Output impedance adjustment			
3/3	finishes)				

3.14 CH2 0 dB Output Flatness Adjustment

1. Connect the power meter and the signal generator as shown in the figure below. Set the output impedance of the signal generator to 50 Ω .

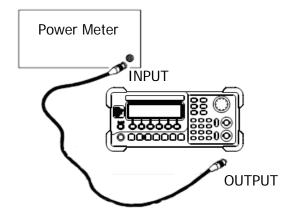


Figure 3-11 Output Flatness Adjustment Connection

- 2. Use the power meter to measure the amplitude (dBm) value of the output signal of the signal generator.
- 3. Perform the measurements in sequence according to the steps in the table below, and select **Para** to input the measurement value at each step.

Outpu	t Signal	Description			
Step	Туре	Output	Frequency	Amplitude	
380	Sine	50 Ω	100 kHz	2 dBm	Flatness for 0 dB, Linear Phase Filter
381	Sine	50 Ω	500 kHz	2 dBm	Flatness for 0 dB, Linear Phase Filter
382	Sine	50 Ω	1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter
383	Sine	50 Ω	5 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter
384	Sine	50 Ω	10.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter
385	Sine	50 Ω	11.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter
386	Sine	50 Ω	15.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter

Table 3-18 0 dB Output Flatness Adjustment Steps (DG1022)

387	Sine	50 Ω	18.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter
388	Sine	50 Ω	20.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter
389 ^[1]	ENDSTEP_CAL_ 0dBFLAT (0 dB output flatness adjustment finishes)				

Table 3-19 0 dB Output Flatness Adjustment Steps (DG1022A)

Outpu	t Signal	tor	Description			
Step	Туре	Output	Frequency	Amplitude		
380	Sine	50 Ω	100 kHz	2 dBm	Flatness for 0 dB, Linear Phase Filter	
381	Sine	50 Ω	500 kHz	2 dBm	Flatness for 0 dB, Linear Phase Filter	
382	Sine	50 Ω	1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter	
383	Sine	50 Ω	5 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter	
384	Sine	50 Ω	10.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter	
385	Sine	50 Ω	11.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter	
386	Sine	50 Ω	15.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter	
387	Sine	50 Ω	18.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter	
388	Sine	50 Ω	20.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter	
389	Sine	50 Ω	23.1 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter	
390	Sine	50 Ω	25.0 MHz	2 dBm	Flatness for 0 dB, Linear Phase Filter	
391 ^[1]						

3.15 CH2 +10 dB Output Flatness Adjustment

- 1. Connect the power meter and the signal generator as shown in Figure 3-11. Set the output impedance of the signal generator to 50 Ω .
- 2. Use the power meter to measure the amplitude (dBm) value of the output signal of the signal generator.
- 3. Perform the measurements in sequence according to the steps in the table below, and select **Para** to input the measurement value at each step.

Outpu	utput Signal of the Signal Generator			Description	
Step	Туре	Output	Frequency	Amplitude	
390	Sine	50 Ω	100 kHz	12 dBm	Flatness for 10 dB, Linear Phase Filter
391	Sine	50 Ω	500 kHz	12 dBm	Flatness for 10 dB, Linear Phase Filter
392	Sine	50 Ω	1 MHz	12 dBm	Flatness for 10 dB, Linear Phase Filter
393	Sine	50 Ω	5 MHz	12 dBm	Flatness for 10 dB, Linear Phase Filter
394	Sine	50 Ω	10.1 MHz	12 dBm	Flatness for 10 dB, Linear Phase Filter
395	Sine	50 Ω	11.1 MHz	12 dBm	Flatness for 10 dB, Linear Phase Filter
396	Sine	50 Ω	15.1 MHz	12 dBm	Flatness for 10 dB, Linear Phase Filter
397	Sine	50 Ω	18.1 MHz	12 dBm	Flatness for 10 dB, Linear Phase Filter
398	Sine	50 Ω	20.1 MHz	12 dBm	Flatness for 10 dB, Linear Phase Filter
399 ^[1]	ENDSTEP_CAL_10dBFLAT (+10 dB output flatness adjustment finishes)				

Table 3-20 + 10 dB Output Flatness Adjustment Steps (DG1022)

Table 3-21	+10 dB Out	put Flatness	Adjustment S	Steps ((DG1022A)

Output Signal of the Signal Generator					Description
Step	Туре	Output	Frequency	Amplitude	
392	Sine	50 Ω	100 kHz	12 dBm	Flatness for 10 dB, Linear Phase Filter
393	Sine	50 Ω	500 kHz	12 dBm	Flatness for 10 dB, Linear Phase Filter
394	Sine	50 Ω	1 MHz	12 dBm	Flatness for 10 dB, Linear Phase Filter

395	Sine	50 Ω	5 MHz	12 dBm	Flatness for 10 dB, Linear Phase Filter
396	Sine	50 Ω	10.1 MHz	12 dBm	Flatness for 10 dB, Linear Phase Filter
397	Sine	50 Ω	11.1 MHz	12 dBm	Flatness for 10 dB, Linear Phase Filter
398	Sine	50 Ω	15.1 MHz	12 dBm	Flatness for 10 dB, Linear Phase Filter
399	Sine	50 Ω	18.1 MHz	12 dBm	Flatness for 10 dB, Linear Phase Filter
400	Sine	50 Ω	20.1 MHz	12 dBm	Flatness for 10 dB, Linear Phase Filter
401	Sine	50 Ω	23.1 MHz	12 dBm	Flatness for 10 dB, Linear Phase Filter
402	Sine	50 Ω	25.0 MHz	12 dBm	Flatness for 10 dB, Linear Phase Filter
403 ^[1]	ENDSTEP_CAL_10dBFLAT (+10 dB output flatness adjustment finishes)				

3.16 Frequency (External Timebase) Adjustment

1. Set the scale accuracy of the frequency counter to 0.1 ppm and its input impedance to 50 Ω (if your frequency counter does not have a 50 Ω input impedance, you need to connect an external 50 Ω terminal). The connecting method is as shown in the figure below. Connect the 10 MHz Out of the frequency counter with the 10 MHz In of the signal generator and the output terminal of the signal generator with the input terminal of the frequency counter.

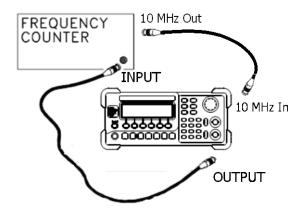


Figure 3-12 Frequency (External Timebase) Adjustment Connection

- 2. Use the frequency counter to measure the output frequency of the signal generator.
- 3. According to the steps in the table below, press **Para** and use the keyboard on the panel to input the measurement value in step 280.

Expected Value			Description
Step	Frequency	Amplitude	
280	<10 MHz	1 Vpp	Output frequency is slightly less than 10 MHz (e.g. 9,999,945.73 Hz)
281 ^[1]	ENDSTEP CAL FREQ (Frequency adjustment finishes)		

Table 3-22 Frequency (External Timebase) Adjustment Steps

3.17 Phase Adjustment

1. Set the input impedance of the oscilloscope to 50Ω (if your oscilloscope does not have a 50Ω input impedance, use an external 50Ω adapter). Connect the two output terminals of the signal generator to two input channels of the oscilloscope correspondingly. The connecting method is as shown in the figure below.

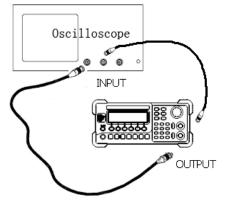


Figure 3-13 Phase Adjustment Connection

Enter the calibration interface (press Utility → Test/Cal → PassWd and enter the password to decrypt the signal generator. Then press Cal → Step). Perform the relative operations in sequence according to the steps in the table below, and select Para to input the measurement value (Dly1 = →2 =) at each step.

Table 3-23 Phase Adjustment Steps

Description
Press MENU at the left of the DS2000A screen \rightarrow "HORIZONTAL"
and then select the corresponding delay measurement softkey.
Read the measurement result (DIy1 $f \rightarrow 2f$) at the bottom of the
screen and input it into the signal generator (in s).
The same as 285.
ENDSTEP_CAL_FREQ (Frequency adjustment finishes)

Note^[1]: this step is only for display and you need not to input any value. Press **Enter** to enter the next step.

At this point, all the calibration operations are finished.

Chapter 4 To Save the Calibration Data

Step	Description		
254	Perform this step to save the calibration data to the non-volatile memory of the instrument after finishing "Calibration Process".		

Table 4-1 To Save the Calibration Data

Chapter 5 To Restore the Initial Calibration Value

Table 5-1 To Restore the Initial Calibration Value

Step	Description
	The signal generator has an initial calibration value (empirical value,
255	not factory default). Perform this step to restore the default calibration
200	value. It is recommended that users perform the complete
	"Calibration Process" to get more accurate output.

Chapter 6 Calibration Prompting Messages

The following prompting messages may appear during the calibration.

1. Performing Self-Test, Please wait...

The system needs some time to finish the self-test, so please wait patiently.

2. Self-Test Passed.

This message is displayed if the system passes the self-test successfully.

3. The instrument now is UNSECURED.

After the message is displayed to indicate that the correct password has been input, users can perform the calibration operation and at this point, the instrument is unsecured.

4. Performing Calibration, Please wait....

The instrument enters the calibration execution menu to prepare to start the calibration, so please wait patiently.

5. Incorrect secure code, please try again.

Users need to input the secure code to calibrate the signal generator. The entered secure code is incorrect and users need to enter the correct code.

6. Please first complete step**.

If users want to finish the selected calibration step during the calibration of the instrument, they must start from step **.