# **RIGOL** Performance Verification Manual

## DL3000 Series Programmable DC Electronic Load

Feb. 2018 RIGOL TECHNOLOGIES, INC.

## **Guaranty and Declaration**

### Copyright

© 2017 **RIGOL** TECHNOLOGIES, INC. All Rights Reserved.

### **Trademark Information**

**RIGOL** is a registered trademark of **RIGOL** TECHNOLOGIES, INC.

### **Publication Number**

PVJ01101-1110

### Notices

- **RIGOL** products are covered by P.R.C. and foreign patents, issued and pending.
- **RIGOL** reserves the right to modify or change parts of or all the specifications and pricing policies at the company's sole decision.
- Information in this publication replaces all previously released materials.
- Information in this publication is subject to change without notice.
- **RIGOL** shall not be liable for either incidental or consequential losses in connection with the furnishing, use, or performance of this manual, as well as any information contained.
- Any part of this document is forbidden to be copied, photocopied, or rearranged without prior written approval of **RIGOL**.

### **Product Certification**

**RIGOL** guarantees that this product conforms to the national and industrial standards in China as well as the ISO9001:2008 standard and the ISO14001:2004 standard. Other international standard conformance certifications are in progress.

### **Contact Us**

If you have any problem or requirement when using our products or this manual, please contact **RIGOL**.

E-mail: service@rigol.com Website: www.rigol.com

## **General Safety Summary**

Please review the following safety precautions carefully before putting the instrument into operation so as to avoid any personal injury or damage to the instrument and any product connected to it. To prevent potential hazards, please follow the instructions specified in this manual to use the instrument properly.

### **Use Proper Power Cord.**

Only the exclusive power cord designed for the instrument and authorized for use within the local country could be used.

### Ground the Instrument.

The instrument is grounded through the Protective Earth lead of the power cord. To avoid electric shock, connect the earth terminal of the power cord to the Protective Earth terminal before connecting any input or output terminals.

### **Connect the Probe Correctly.**

If a probe is used, the probe ground lead must be connected to earth ground. Do not connect the ground lead to high voltage. Improper way of connection could result in dangerous voltages being present on the connectors, controls or other surfaces of the oscilloscope and probes, which will cause potential hazards for operators.

#### **Observe All Terminal Ratings.**

To avoid fire or shock hazard, observe all ratings and markers on the instrument and check your manual for more information about ratings before connecting the instrument.

#### **Use Proper Overvoltage Protection.**

Ensure that no overvoltage (such as that caused by a bolt of lightning) can reach the product. Otherwise, the operator might be exposed to the danger of an electric shock.

#### **Do Not Operate Without Covers.**

Do not operate the instrument with covers or panels removed.

#### Do Not Insert Objects Into the Air Outlet.

Do not insert objects into the air outlet, as doing so may cause damage to the instrument.

#### **Use Proper Fuse.**

Please use the specified fuses.

### Avoid Circuit or Wire Exposure.

Do not touch exposed junctions and components when the unit is powered on.

### Do Not Operate With Suspected Failures.

If you suspect that any damage may occur to the instrument, have it inspected by **RIGOL** authorized personnel before further operations. Any maintenance, adjustment or replacement especially to circuits or accessories must be performed by **RIGOL** authorized personnel.

### **Provide Adequate Ventilation.**

Inadequate ventilation may cause an increase of temperature in the instrument, which would cause damage to the instrument. So please keep the instrument well ventilated and inspect the air outlet and the fan regularly.

### Do Not Operate in Wet Conditions.

To avoid short circuit inside the instrument or electric shock, never operate the instrument in a humid environment.

### Do Not Operate in an Explosive Atmosphere.

To avoid personal injuries or damage to the instrument, never operate the instrument in an explosive atmosphere.

### Keep Product Surfaces Clean and Dry.

To avoid dust or moisture from affecting the performance of the instrument, keep the surfaces of the instrument clean and dry.

### Prevent Electrostatic Impact.

Operate the instrument in an electrostatic discharge protective environment to avoid damage induced by static discharges. Always ground both the internal and external conductors of cables to release static before making connections.

### Use the Battery Properly.

Do not expose the battery (if available) to high temperature or fire. Keep it out of the reach of children. Improper change of a battery (lithium battery) may cause an explosion. Use the **RIGOL** specified battery only.

### Handle with Caution.

Please handle with care during transportation to avoid damage to keys, knobs, interfaces, and other parts on the panels.

## **Document Overview**

DL3000 series programmable DC electronic load (hereinafter referred to as the DL3000 series) is a cost-effective electronic load with high performance. This manual gives a detailed description of the test method of performance verification for the DL3000 series. The test is designed to verify whether DL3000 series can work normally and whether it can meet with the given specifications.

### Main Topics of this Manual:

### **Chapter 1 Test Overview**

This chapter introduces test preparations, recommended test devices, test precautions, and test result records.

### **Chapter 2 Specifications Test**

This chapter introduces the test method for the specifications of the DL3000 series.

### Appendix

The appendix provides the test record forms for all the models of the DL3000 series and its performance verification.

### **Content Conventions in this Manual:**

The number of channels and the rated values of input parameters for the DL3000 series are listed in the following table. Unless otherwise specified, this manual takes DL3031A as an example to illustrate the test methods for the performance verification of the DL3000 series.

| Model          | No. of Channels | Voltage  | Current | Power |
|----------------|-----------------|----------|---------|-------|
| DL3021/DL3021A | 1               | DC 150 V | 40 A    | 200 W |
| DL3031/DL3031A | 1               | DC 150 V | 60 A    | 350 W |

## Contents

| Guaranty and Declaration                                      | I    |
|---------------------------------------------------------------|------|
| General Safety Summary                                        | II   |
| Document Overview                                             | IV   |
| Chapter 1 Test Overview                                       | 1-1  |
| Test Preparations                                             | 1-2  |
| Recommended Test Devices                                      |      |
| Test Precautions<br>Test Result Records                       |      |
|                                                               |      |
| Chapter 2 Specifications Test                                 |      |
| CC Programming Accuracy and Readback Accuracy<br>Preparations |      |
| Test Procedures                                               |      |
| CV Programming Accuracy and Readback Accuracy                 |      |
| Preparations                                                  | 2-11 |
| Test Procedures                                               | 2-12 |
| CR Programming Accuracy                                       | 2-20 |
| Preparations                                                  |      |
| Test Procedures                                               | 2-21 |
| Appendix                                                      | 1    |
| Appendix A: Test Record Forms                                 |      |
| DL3021 Performance Verification Test Record Form              | 1    |
| DL3021A Performance Verification Test Record Form             | 4    |
| DL3031 Performance Verification Test Record Form              |      |
| DL3031A Performance Verification Test Record Form             |      |
| Appendix B: Specifications                                    | 13   |

## **Chapter 1** Test Overview

Contents in this chapter:

- Test Preparations
- Recommended Test Devices
- Test Precautions
- Test Result Records

## **Test Preparations**

Before performing the performance verification test, make the following preparations.

1. Perform the self-inspection to make sure that the instrument can work normally.

Plug the specified power cord available in the accessories into the AC power supply connector of the instrument, and then connect the instrument to the properly grounded AC power. Press the **Power** key **(D)**, and then the instrument is launched and begins to perform the self-inspection. If the instrument passes the self-inspection, the instrument starts normally with a splashing screen. If the self-inspection fails, please turn off the instrument and then turn it on again to execute the self-inspection. If the problem still persists, contact **RIGOL**. Ensure that you locate the problem for self-inspection failure and resolve the problem properly. You are not allowed to perform the performance verification test until the instrument passes the self-inspection test.

### Note:

1) Before connecting to power, make sure that the setting of the voltage selector on the rear panel of DL3000 series matches the AC power supply to be connected. Ensure that the fuse currently installed matches the input voltage. The specifications for AC input voltages and their matched fuses supported by the DL3000 series are as shown in Table 1-1.

| Table 1 1 Ne input voltage and ruse rading |                                                                |                |  |  |  |
|--------------------------------------------|----------------------------------------------------------------|----------------|--|--|--|
| AC Selector                                | AC Input Voltage                                               | Fuse Rating    |  |  |  |
| 115 Vac                                    | ±(10% of AC input + 115 Vac),<br>50 Hz to 60 Hz                | T0.315 A/250 V |  |  |  |
| 230 Vac                                    | ±(10% of AC input + 230 Vac)<br>(max: 250 Vac), 50 Hz to 60 Hz | T0.20 A/250 V  |  |  |  |

### Table 1-1 AC Input Voltage and Fuse Rating

**Note:** The upper limit of the AC input voltage supported by the DL3000 series is 250 Vac.

- 2) Before performing the self-inspection, make sure that no load is connected to the terminals on the front and rear panels of the instrument.
- 2. Make sure that the instrument is used within its calibration period (1 year). If calibration is required, please contact **RIGOL**.
- 3. Warm up the instrument for at least 30 minutes.
- 4. Make sure that the ambient temperature is between  $18^{\circ}$ C and  $28^{\circ}$ C, and the relative humidity is less than 80%.

5. Keep the cables of the test probe as short as possible.



### CAUTION

The tests described in this manual are required to be carried out by the professionals. During the test, dangerous voltages might be present on the output terminals of the power supply and some test devices.

## **Recommended Test Devices**

You are recommended to use the devices listed in Table 1-2 or other devices whose performance specifications meet the "Performance Requirement" listed in Table 1-2.

| Device                                         | Performance<br>Requirement                 | Recommended<br>Model           | Usage                                                                                    |
|------------------------------------------------|--------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------|
| Digital<br>Multimeter                          | Readout Resolution: 61/2                   | RIGOL DM3068                   | Measures DC<br>voltage                                                                   |
| DC Power Supply                                | DC 150 V/1 A<br>DC 8 V/90 A                | DSP-150-005HD<br>DSP-008-090HD | Provides voltage<br>and current                                                          |
| Current<br>Sampling<br>Resistor R <sub>M</sub> | $0.01 \ \Omega$ (temperature drift: 1 ppm) | RUG-Z-R010-01-TK1              | Measures<br>programming<br>accuracy and<br>readback accuracy                             |
| USB Cable                                      | -                                          | -                              | Realizes remote<br>control, measures<br>programming<br>accuracy and<br>readback accuracy |

Table 1-2 Recommended Test Devices

## **Test Precautions**

Connection methods for the input terminals (see Figure 1-1):

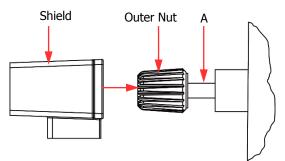



Figure 1-1 Connect Input Terminals

- (1) Rotate the outer nut of the input terminal counterclockwise to remove it;
- (2) Connect the test lead to Position A of the input terminal.
- (3) Fasten the outer nut of the input terminal clockwise.
- (4) Secure the shield to the terminal and then tighten the screw.



### WARNING

To avoid electric shock, ensure that you have installed the shield when the DC voltage output from the DUT is equal to or greater than 70 V.

During the test, please shield the space radiation noise in the test environment to avoid its impact on the test.

## **Test Result Records**

Please record and save the test results for each test item. The **"Appendix A: Test Record Forms"** in this manual provides the test record forms for all the models of the DL3000 series. The form lists the test item and its corresponding performance specification limits. You can record the test results in the form.

### Tip

**RIGOL** recommends that you should copy a few pieces of the desired test record forms before each test. During the test, you can record the test results in the copied form to ensure that the form can be repeatedly used.

## **Chapter 2** Specifications Test

Contents in this chapter:

- CC Programming Accuracy and Readback Accuracy
- CV Programming Accuracy and Readback Accuracy
- CR Programming Accuracy

## CC Programming Accuracy and Readback Accuracy

## Preparations

Before performing the test, select the appropriate AC voltage via the "AC Selector" on the rear panel of the electronic load according to the AC voltage standard of your country (230 Vac is taken as an example in all the tests in this manual). At room temperature ( $25^{\circ}$ C), connect the recommended devices specified in "**Recommended Test Devices**" according to the connection method in Figure 2-1. During the test process, please set the AC voltage according to the selected voltage in "AC Selector" on the rear panel of the electronic load.

In the CC tests, a current sampling resistor (required to be calibrated) should be serially connected between the DC power supply and the electronic load. It is used to convert the current signal under test to the voltage signal for the measurement of related parameters.

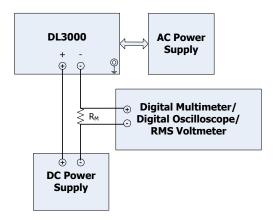



Figure 2-1 CC Test Connection

### **Test Procedures**

CC programming accuracy refers to the error between the current setting of the channel and the actual input current value when the electronic load is in CC mode. CC readback accuracy refers to the error between the readback current value and the actual input current value when the electronic load is in CC mode.

The following section takes DL3031A as an example to test the CC programming accuracy and readback accuracy of the DL3000 series.

**Note:** During the test, please select the corresponding test record form according to the model of the DL3000 series under test to set the corresponding parameters, record and calculate the corresponding specifications.

### Specification:

| Annual Accuracy <sup>[1]</sup> (25°C $\pm$ 5°C), $\pm$ (% of Output + Offset) |                                  |  |
|-------------------------------------------------------------------------------|----------------------------------|--|
| Programming                                                                   | $\pm (0.05\% + 0.05\% FS^{[1]})$ |  |
| Readback Value $\pm (0.05\% \pm 0.05\% FS^{[1]})$                             |                                  |  |

**Note**<sup>[1]</sup>: The accuracy specifications are acquired through calibration at 25°C after 1-hour warm-up. **Note**<sup>[2]</sup>: FS indicates the full scale.

### **Procedures:**

- 1. Power off DL3031A. Connect DL3031A, AC power supply, DC power supply, a current sampling resistor (with a resistance  $R_M 0.01 \Omega$ ), and a digital multimeter according to Figure 2-1 (Pay attention to the connection method for the current sampling resistor, the channel input terminals of DL3031A, and the digital multimeter). Connect the USB DEVICE interface on the rear panel of the electronic load to the PC via the USB cable.
- 2. Turn on the AC power supply, and then set its voltage to 230 V, the frequency to 50 Hz. Then, turn on the output.

**Note:** The voltage setting of the AC power supply should be matched with the AC voltage selector on the rear panel of DL3031A.

- 3. Power on DL3031A, and restores all the settings of the electronic load to its factory default settings.
- 4. Turn on the DC power supply, and set its output voltage to 8 V and output current to 62 A.
- 5. Measure the CC programming accuracy and readback accuracy when the current range is 60 A.
  - (1) Measure the CC programming accuracy and readback accuracy when the

current setting value is a low value.

a) Power on DL3031A. Send the following commands via the remote interface to set the current of the input channel, and then enable the channel input.

| :SOUR:CURR:RANG 60   | /*Sets the current range of the electronic load to 60 A.*/ |
|----------------------|------------------------------------------------------------|
| :SOUR:CURR:LEV:IMM 8 | /*Sets the input current of the electronic load to 8 A.*/  |
| :SOUR:INP:STAT 1     | /*Enables the channel input.*/                             |

- b) Turn on the digital multimeter. Select the DC voltage (DCV) measurement function and set the range to "Auto". Make sure that the electronic load works in CC mode. Read the digital multimeter and record the reading (U<sub>1</sub>) of the digital multimeter. Calculate the current value ( $I_1 = U_1/R_M$ ).
- c) Send the :MEAS:CURR? command via the remote interface, read and record the returned current value  $(I_2)$  of the query command.
- d) Calculate the CC programming accuracy ( $|I_1 I_L|$ ) and the CC readback accuracy ( $|I_2 I_1|$ ). Compare them with the specified specifications in Table 2-4. Wherein,  $I_L$  is the low current value of the input channel.
- (2) Measure the CC programming accuracy and readback accuracy when the current setting value is a rated value.
  - a) Power on DL3031A. Send the following commands via the remote interface to set the current of the input channel, and then enable the channel input.

| :SOUR:CURR:RANG 60    | /*Sets the current range of the | e |
|-----------------------|---------------------------------|---|
|                       | electronic load to 60 A.*/      |   |
| :SOUR:CURR:LEV:IMM 60 | /*Sets the input current of the | e |
|                       | electronic load to 60 A.*/      |   |
| :SOUR:INP:STAT 1      | /*Enables the channel input.*/  |   |

- b) Turn on the digital multimeter. Select the DC voltage (DCV) measurement function and set the range to "Auto". Make sure that the electronic load works in CC mode. Read the digital multimeter and record the reading (U<sub>2</sub>) of the digital multimeter. Calculate the current value ( $I_3 = U_2/R_M$ ).
- c) Send the :MEAS:CURR? command via the remote interface, read and record the returned current value  $(I_4)$  of the query command.

- d) Calculate the CC programming accuracy  $(|I_3 I_0|)$  and the CC readback accuracy  $(|I_4 I_3|)$ . Compare them with the specified specifications in Table 2-4. Wherein,  $I_0$  is the rated current value of the input channel.
- 6. Measure the CC programming accuracy and readback accuracy when the current range is 6 A.
  - (1) Measure the CC programming accuracy and readback accuracy when the current setting value is a low value.
    - a) Power on DL3031A. Send the following commands via the remote interface to set the current of the input channel, and then enable the channel input.

| :SOUR:CURR:RANG 6    | /*Sets   | the     | current     | range      | of     | the   |
|----------------------|----------|---------|-------------|------------|--------|-------|
|                      | electror | nic loa | d to 6 A.*  | /          |        |       |
| :SOUR:CURR:LEV:IMM 1 | /*Sets t | the inp | out current | t of the e | electi | ronic |
|                      | load to  | 1 A.*/  | 1           |            |        |       |
| :SOUR:INP:STAT 1     | /*Enab   | les the | e channel   | input.*/   |        |       |

- b) Turn on the digital multimeter. Select the DC voltage (DCV) measurement function and set the range to "Auto". Make sure that the electronic load works in CC mode. Read the digital multimeter and record the reading (U<sub>1</sub>) of the digital multimeter. Calculate the current value ( $I_1 = U_1/R_M$ ).
- c) Send the :MEAS:CURR? command via the remote interface, read and record the returned current value  $(I_2)$  of the query command.
- d) Calculate the CC programming accuracy ( $|I_1 I_L|$ ) and the CC readback accuracy ( $|I_2 I_1|$ ). Compare them with the specified specifications in Table 2-4. Wherein,  $I_L$  is the low current value of the input channel.
- (2) Measure the CC programming accuracy and readback accuracy when the current setting value is a rated value.
  - a) Power on DL3031A. Send the following commands via the remote interface to set the current of the input channel, and then enable the channel input.

| :SOUR:CURR:RANG 6    | /*Sets   | the     | current   | range      | of | the |
|----------------------|----------|---------|-----------|------------|----|-----|
|                      | electror | nic loa | id to 6 A | .*/        |    |     |
| :SOUR:CURR:LEV:IMM 6 | /*Sets   | the     | input     | current    | of | the |
|                      | electror | nic loa | id to 6 A | .*/        |    |     |
| :SOUR:INP:STAT 1     | /*Enab   | les th  | e channe  | el input.* | /  |     |
|                      | •        |         |           | •          | ,  |     |

- b) Turn on the digital multimeter. Select the DC voltage (DCV) measurement function and set the range to "Auto". Make sure that the electronic load works in CC mode. Read the digital multimeter and record the reading (U<sub>2</sub>) of the digital multimeter. Calculate the current value (I<sub>3</sub> = U<sub>2</sub>/R<sub>M</sub>).
- c) Send the :MEAS:CURR? command via the remote interface, read and record the returned current value  $(I_4)$  of the query command.
- d) Calculate the CC programming accuracy  $(|I_3 I_0|)$  and the CC readback accuracy  $(|I_4 I_3|)$ . Compare them with the specified specifications in Table 2-4. Wherein,  $I_0$  is the rated current value of the input channel.
- 7. Send the following command via the remote interface to disable the channel input.

:SOUR:INP:STAT 0 /\*Disables the channel input.\*/

### **Test Record Forms:**

| Table 2-1 Test Record Form | of DL3021 | CC Programming | Accuracy | and Readback |
|----------------------------|-----------|----------------|----------|--------------|
| Accuracy                   |           |                |          |              |

|                            | Model                                     | DL3021 (150 V/40 A)           |  |  |  |
|----------------------------|-------------------------------------------|-------------------------------|--|--|--|
| The current range is 40 A. |                                           |                               |  |  |  |
| Specification              | Programming Accuracy                      | ±(0.05%+0.02 A)               |  |  |  |
| Specification              | Readback Accuracy                         | ±(0.05%+0.02 A)               |  |  |  |
| DL3021 Setting             | Current                                   | $I_{L}^{[1]}$                 |  |  |  |
|                            | U <sub>1</sub>                            |                               |  |  |  |
|                            | $I_1 = U_1 / R_M^{[2]}$                   |                               |  |  |  |
| Test Result                | I <sub>2</sub>                            |                               |  |  |  |
|                            | Programming Accuracy: $ I_1 - I_L^{[1]} $ |                               |  |  |  |
|                            | Readback Accuracy: $ I_2 - I_1 $          |                               |  |  |  |
| DL3021 Setting             | Current                                   | I <sub>0</sub> <sup>[3]</sup> |  |  |  |
|                            | U <sub>2</sub>                            |                               |  |  |  |
|                            | $I_3 = U_2 / R_M^{[2]}$                   |                               |  |  |  |
| Test Result                | I4                                        |                               |  |  |  |
|                            | Programming Accuracy: $ I_3 - I_0^{[3]} $ |                               |  |  |  |
|                            | Readback Accuracy: $ I_4 - I_3 $          |                               |  |  |  |
| The current range is 4     | 1 A.                                      |                               |  |  |  |
| Specification              | Programming Accuracy                      | ±(0.05%+0.002 A)              |  |  |  |
| Specification              | Readback Accuracy                         | ±(0.05%+0.002 A)              |  |  |  |
| DL3021 Setting             | Current                                   | $I_{L}^{[1]}$                 |  |  |  |
|                            | U <sub>1</sub>                            |                               |  |  |  |
|                            | $I_1 = U_1 / R_M^{[2]}$                   |                               |  |  |  |
| Test Result                | I <sub>2</sub>                            |                               |  |  |  |
|                            | Programming Accuracy: $ I_1 - I_L^{[1]} $ |                               |  |  |  |
|                            | Readback Accuracy: $ I_2 - I_1 $          |                               |  |  |  |
| DL3021 Setting             | Current                                   | I <sub>0</sub> <sup>[3]</sup> |  |  |  |
|                            | U <sub>2</sub>                            |                               |  |  |  |
|                            | $I_3 = U_2 / R_M^{[2]}$                   |                               |  |  |  |
| Test Result                | I <sub>4</sub>                            |                               |  |  |  |
|                            | Programming Accuracy: $ I_3 - I_0^{[3]} $ |                               |  |  |  |
|                            | Readback Accuracy: $ I_4 - I_3 $          |                               |  |  |  |

Table 2-2 Test Record Form of DL3021A CC Programming Accuracy and Readback Accuracy

| Accuracy               | Model                                                         | DL3021A (150 V/40 A)          |  |  |  |  |
|------------------------|---------------------------------------------------------------|-------------------------------|--|--|--|--|
| The current range is 4 | The current range is 40 A.                                    |                               |  |  |  |  |
| Specification          | Programming Accuracy                                          | ±(0.05%+0.02 A)               |  |  |  |  |
| Specification          | Readback Accuracy                                             | ±(0.05%+0.02 A)               |  |  |  |  |
| DL3021A Setting        | Current                                                       | $I_L^{[1]}$                   |  |  |  |  |
|                        | U <sub>1</sub>                                                |                               |  |  |  |  |
|                        | I <sub>1</sub> =U <sub>1</sub> /R <sub>M</sub> <sup>[2]</sup> |                               |  |  |  |  |
| Test Result            | I <sub>2</sub>                                                |                               |  |  |  |  |
|                        | Programming Accuracy: $ I_1 - I_L^{[1]} $                     |                               |  |  |  |  |
|                        | Readback Accuracy: $ I_2 - I_1 $                              |                               |  |  |  |  |
| DL3021A Setting        | Current                                                       | I <sub>0</sub> <sup>[3]</sup> |  |  |  |  |
|                        | U <sub>2</sub>                                                |                               |  |  |  |  |
|                        | $I_3 = U_2 / R_M^{[2]}$                                       |                               |  |  |  |  |
| Test Result            | $I_4$                                                         |                               |  |  |  |  |
|                        | Programming Accuracy: $ I_3 - I_0^{[3]} $                     |                               |  |  |  |  |
|                        | Readback Accuracy:  I <sub>4</sub> - I <sub>3</sub>           |                               |  |  |  |  |
| The current range is 4 | 4 A.                                                          |                               |  |  |  |  |
| Specification          | Programming Accuracy                                          | ±(0.05%+0.002 A)              |  |  |  |  |
| Specification          | Readback Accuracy                                             | ±(0.05%+0.002 A)              |  |  |  |  |
| DL3021A Setting        | Current                                                       | $I_L^{[1]}$                   |  |  |  |  |
|                        | U <sub>1</sub>                                                |                               |  |  |  |  |
|                        | $I_1 = U_1 / R_M^{[2]}$                                       |                               |  |  |  |  |
| Test Result            | I <sub>2</sub>                                                |                               |  |  |  |  |
|                        | Programming Accuracy: $ I_1 - I_L^{[1]} $                     |                               |  |  |  |  |
|                        | Readback Accuracy:  I <sub>2</sub> - I <sub>1</sub>           |                               |  |  |  |  |
| DL3021A Setting        | Current                                                       | I <sub>0</sub> <sup>[3]</sup> |  |  |  |  |
|                        | U <sub>2</sub>                                                |                               |  |  |  |  |
|                        | I <sub>3</sub> =U <sub>2</sub> /R <sub>M</sub> <sup>[2]</sup> |                               |  |  |  |  |
| Test Result            | I4                                                            |                               |  |  |  |  |
|                        | Programming Accuracy: $ I_3 - I_0^{[3]} $                     |                               |  |  |  |  |
|                        | Readback Accuracy:  I <sub>4</sub> - I <sub>3</sub>           |                               |  |  |  |  |

| Table 2-3 Test | Record Form | of DL3031 | CC Programming | Accuracy | and Readback |
|----------------|-------------|-----------|----------------|----------|--------------|
| Accuracy       |             |           |                |          |              |

| Accuracy               | Model                                                         | DL3031 (150 V/60 A)           |
|------------------------|---------------------------------------------------------------|-------------------------------|
| The current range is ( | 50 A.                                                         |                               |
| Specification          | Programming Accuracy                                          | ±(0.05%+0.03 A)               |
| Specification          | Readback Accuracy                                             | ±(0.05%+0.03 A)               |
| DL3031 Setting         | Current                                                       | $I_{L}^{[1]}$                 |
|                        | U <sub>1</sub>                                                |                               |
|                        | $I_1 = U_1 / R_M^{[2]}$                                       |                               |
| Test Result            | I <sub>2</sub>                                                |                               |
|                        | Programming Accuracy: $ I_1 - I_L^{[1]} $                     |                               |
|                        | Readback Accuracy: $ I_2 - I_1 $                              |                               |
| DL3031 Setting         | Current                                                       | I <sub>0</sub> <sup>[3]</sup> |
|                        | U <sub>2</sub>                                                |                               |
|                        | $I_3 = U_2 / R_M^{[2]}$                                       |                               |
| Test Result            | I <sub>4</sub>                                                |                               |
|                        | Programming Accuracy: $ I_3 - I_0^{[3]} $                     |                               |
|                        | Readback Accuracy:  I <sub>4</sub> - I <sub>3</sub>           |                               |
| The current range is ( | 5 A.                                                          |                               |
| Specification          | Programming Accuracy                                          | ±(0.05%+0.003 A)              |
| Specification          | Readback Accuracy                                             | ±(0.05%+0.003 A)              |
| DL3031 Setting         | Current                                                       | $I_L^{[1]}$                   |
|                        | U1                                                            |                               |
|                        | I <sub>1</sub> =U <sub>1</sub> /R <sub>M</sub> <sup>[2]</sup> |                               |
| Test Result            | I2                                                            |                               |
|                        | Programming Accuracy: $ I_1 - I_L^{[1]} $                     |                               |
|                        | Readback Accuracy:  I <sub>2</sub> - I <sub>1</sub>           |                               |
| DL3031 Setting         | Current                                                       | I <sub>0</sub> <sup>[3]</sup> |
|                        | U <sub>2</sub>                                                |                               |
|                        | I <sub>3</sub> =U <sub>2</sub> /R <sub>M</sub> <sup>[2]</sup> |                               |
| Test Result            | I <sub>4</sub>                                                |                               |
|                        | Programming Accuracy: $ I_3 - I_0^{[3]} $                     |                               |
|                        | Readback Accuracy:  I <sub>4</sub> - I <sub>3</sub>           |                               |

Table 2-4 Test Record Form of DL3031A CC Programming Accuracy and Readback Accuracy

| Accuracy                   | Model                                               | DL3031A (150 V/60 A)   |
|----------------------------|-----------------------------------------------------|------------------------|
| The current range is 6     | 50 A.                                               |                        |
| Specification              | Programming Accuracy                                | ±(0.05%+0.03 A)        |
| Specification              | Readback Accuracy                                   | ±(0.05%+0.03 A)        |
| DL3031A Setting            | Current                                             | $I_{L}^{[1]}$          |
|                            | U <sub>1</sub>                                      |                        |
|                            | $I_1 = U_1 / R_M^{[2]}$                             |                        |
| Test Result                | I <sub>2</sub>                                      |                        |
|                            | Programming Accuracy: $ I_1 - I_L^{[1]} $           |                        |
|                            | Readback Accuracy: $ I_2 - I_1 $                    |                        |
| DL3031A Setting            | Current                                             | I0 <sup>[3]</sup>      |
|                            | U2                                                  |                        |
|                            | $I_3 = U_2 / R_M^{[2]}$                             |                        |
| Test Result                | $I_4$                                               |                        |
|                            | Programming Accuracy: $ I_3 - I_0^{[3]} $           |                        |
|                            | Readback Accuracy:  I <sub>4</sub> - I <sub>3</sub> |                        |
| The current range is 6     | 5 A.                                                |                        |
| Specification              | Programming Accuracy                                | ±(0.05%+0.003 A)       |
| Specification              | Readback Accuracy                                   | ±(0.05%+0.003 A)       |
| DL3031A Setting            | Current                                             | $\mathrm{I}_{L}^{[1]}$ |
|                            | U <sub>1</sub>                                      |                        |
|                            | $I_1 = U_1 / R_M^{[2]}$                             |                        |
| Test Result                | I2                                                  |                        |
|                            | Programming Accuracy: $ I_1 - I_L^{[1]} $           |                        |
|                            | Readback Accuracy: $ I_2 - I_1 $                    |                        |
| DL3031A Setting            | Current                                             | I0 <sup>[3]</sup>      |
|                            | U <sub>2</sub>                                      |                        |
|                            | $I_3 = U_2 / R_M^{[2]}$                             |                        |
| Test Result                | I4                                                  |                        |
|                            | Programming Accuracy: $ I_3 - I_0^{[3]} $           |                        |
| News[1], indicates the law | Readback Accuracy:  I <sub>4</sub> - I <sub>3</sub> |                        |

## Preparations

Before performing the test, select the appropriate AC voltage via the "AC Selector" on the rear panel of the electronic load according to the AC voltage standard of your country (230 Vac is taken as an example in all the tests in this manual). At room temperature ( $25^{\circ}$ C), connect the recommended devices specified in "**Recommended Test Devices**" according to the connection method in Figure 2-2. During the test process, please set the AC voltage according to the selected voltage in "AC Selector" on the rear panel of the electronic load.

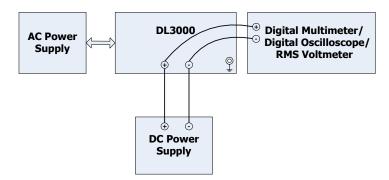



Figure 2-2 CV Test Connection

**Note:** In case of large current input, please use Sense terminal to compensate the voltage drop on the lead of the load.

### **Test Procedures**

CV programming accuracy refers to the error between the voltage setting of the channel and the actual input voltage value when the electronic load is in CV mode. CV readback accuracy refers to the error between the readback voltage value and the actual input voltage value when the electronic load is in CV mode.

The following section takes DL3031A as an example to test the CV programming accuracy and readback accuracy of the DL3000 series.

**Note:** During the test, please select the corresponding test record form according to the model of the DL3000 series under test to set the corresponding parameters, record and calculate the corresponding specifications.

### Specification:

| Annual Accuracy <sup>[1]</sup> (25°C $\pm$ 5°C), $\pm$ (% of Output + Offset) |                                   |  |  |  |
|-------------------------------------------------------------------------------|-----------------------------------|--|--|--|
| Programming                                                                   | ±(0.05%+0.025%FS <sup>[1]</sup> ) |  |  |  |
| Readback Value ±(0.05%+0.02%FS <sup>[1]</sup> )                               |                                   |  |  |  |

**Note**<sup>[1]</sup>: The accuracy specifications are acquired through calibration at 25°C after 1-hour warm-up. **Note**<sup>[2]</sup>: FS indicates the full scale.

### **Test Procedures:**

- Power off DL3031A. Connect DL3031A, AC power supply, DC power supply, and a digital multimeter according to Figure 2-2 (Pay attention to the connection method for the channel input terminals of DL3031A and the digital multimeter). Connect the USB DEVICE interface on the rear panel of the electronic load to the PC via the USB cable.
- 2. Turn on the AC power supply, and then set its voltage to 230 V, the frequency to 50 Hz. Then, turn on the output.

**Note:** The voltage setting of the AC power supply should be matched with the AC voltage selector on the rear panel of DL3031A.

- 3. Power on DL3031A, and restores all the settings of the electronic load to its factory default settings.
- 4. Turn on the DC power supply, and set its output voltage to 152 V and output current to 0.1 A.
- 5. Measure the CV programming accuracy and readback accuracy when the voltage range is 150 V.
  - (1) Measure the CV programming accuracy and readback accuracy when the voltage setting value is a low value.

a) Power on DL3031A. Send the following commands via the remote interface to set the voltage of the input channel, and then enable the channel input.

| :SOUR:VOLT:RANG 150   | /*Sets   | the     | voltage    | range      | of     | the   |
|-----------------------|----------|---------|------------|------------|--------|-------|
|                       | electror | nic loa | d to 150 V | '.*/       |        |       |
| :SOUR:VOLT:LEV:IMM 18 | •        |         |            | e of the e | electi | ronic |
|                       | load to  |         | ,          |            |        |       |
| :SOUR:INP:STAT 1      | /*Enab   | les the | e channel  | input.*/   |        |       |

- b) Turn on the digital multimeter. Select the DC voltage (DCV) measurement function and set the range to "Auto". Make sure that the electronic load works in CV mode. Read the digital multimeter and record the reading  $(U_1)$  of the digital multimeter.
- c) Send the :MEAS:VOLT? command via the remote interface, read and record the returned voltage value  $(U_2)$  of the query command.
- d) Calculate the CV programming accuracy  $(|U_1 U_L|)$  and the CV readback accuracy  $(|U_2 U_1|)$ . Compare them with the specified specifications in Table 2-8. Wherein,  $U_L$  is the low current value of the input channel.
- (2) Measure the CV programming accuracy and readback accuracy when the voltage setting value is a rated value.
  - a) Power on DL3031A. Send the following commands via the remote interface to set the voltage of the input channel, and then enable the channel input.

| :SOUR:VOLT:RANG 150         | /*Sets the voltage range of the |  |  |  |
|-----------------------------|---------------------------------|--|--|--|
| electronic load to 150 V.*/ |                                 |  |  |  |
| :SOUR:VOLT:LEV:IMM 150      | /*Sets the input voltage of the |  |  |  |
|                             | electronic load to 150 V.*/     |  |  |  |
| :SOUR:INP:STAT 1            | /*Enables the channel input.*/  |  |  |  |
|                             |                                 |  |  |  |

- b) Turn on the digital multimeter. Select the DC voltage (DCV) measurement function and set the range to "Auto". Make sure that the electronic load works in CV mode. Read the digital multimeter and record the reading ( $U_3$ ) of the digital multimeter.
- c) Send the :MEAS:VOLT? command via the remote interface, read and record the returned voltage value  $(U_4)$  of the query command.
- d) Calculate the CV programming accuracy ( $|U_3 U_0|$ ) and the CV readback accuracy ( $|U_4 U_3|$ ). Compare them with the specified

specifications in Table 2-8. Wherein,  $U_0$  is the rated voltage value of the input channel.

- 6. Measure the CV programming accuracy and readback accuracy when the voltage range is 15 V.
  - (1) Measure the CV programming accuracy and readback accuracy when the voltage setting value is a low value.
    - a) Power on DL3031A. Send the following commands via the remote interface to set the voltage of the input channel, and then enable the channel input.

| :SOUR:VOLT:RANG 15   | /*Sets   | the     | voltage                 | range      | of     | the   |
|----------------------|----------|---------|-------------------------|------------|--------|-------|
|                      | electror | nic loa | d to 15 V. <sup>3</sup> | */         |        |       |
| :SOUR:VOLT:LEV:IMM 4 | /*Sets t | he inp  | out voltage             | e of the e | electi | ronic |
|                      | load to  | 4 V.*/  |                         |            |        |       |
| :SOUR:INP:STAT 1     | /*Enabl  | es the  | e channel i             | nput.*/    |        |       |

- b) Turn on the digital multimeter. Select the DC voltage (DCV) measurement function and set the range to "Auto". Make sure that the electronic load works in CV mode. Read the digital multimeter and record the reading  $(U_1)$  of the digital multimeter.
- c) Send the :MEAS:VOLT? command via the remote interface, read and record the returned voltage value  $(U_2)$  of the query command.
- d) Calculate the CV programming accuracy  $(|U_1 U_L|)$  and the CV readback accuracy  $(|U_2 U_1|)$ . Compare them with the specified specifications in Table 2-8. Wherein,  $U_L$  is the low current value of the input channel.
- (2) Measure the CV programming accuracy and readback accuracy when the voltage setting value is a rated value.
  - a) Power on DL3031A. Send the following commands via the remote interface to set the voltage of the input channel, and then enable the channel input.

| :SOUR:VOLT:RANG 15    |   | voltage<br>d to 15 | e range<br>V.*/ | of | the |
|-----------------------|---|--------------------|-----------------|----|-----|
| :SOUR:VOLT:LEV:IMM 15 | • | input<br>Id to 15  | voltage         | of | the |
| :SOUR:INP:STAT 1      |   |                    | el input.*,     | /  |     |

b) Turn on the digital multimeter. Select the DC voltage (DCV)

measurement function and set the range to "Auto". Make sure that the electronic load works in CV mode. Read the digital multimeter and record the reading  $(U_3)$  of the digital multimeter.

- c) Send the :MEAS:VOLT? command via the remote interface, read and record the returned voltage value  $(U_4)$  of the query command.
- d) Calculate the CV programming accuracy  $(|U_3 U_0|)$  and the CV readback accuracy  $(|U_4 U_3|)$ . Compare them with the specified specifications in Table 2-8. Wherein,  $U_0$  is the rated voltage value of the input channel.
- 7. Send the following command via the remote interface to disable the channel input.

:SOUR:INP:STAT 0 /\*Disables the channel input.\*/

### **Test Record Forms:**

Table 2-5 Test Record Form of DL3021 CV Programming Accuracy and Readback Accuracy

| ,                    | Model                                                                 | DL3021 (150 V/40 A)           |
|----------------------|-----------------------------------------------------------------------|-------------------------------|
| The voltage range is | s 150 V.                                                              |                               |
|                      | Programming Accuracy                                                  | ±(0.05%+0.0375 V)             |
| Specification        | Readback Accuracy                                                     | ±(0.05%+0.03 V)               |
| DL3021 Setting       | Voltage                                                               | $U_{L}^{[1]}$                 |
|                      | U <sub>1</sub>                                                        |                               |
| Test Desult          | U <sub>2</sub>                                                        |                               |
| Test Result          | Programming Accuracy: $ U_1 - U_L^{[1]} $                             |                               |
|                      | Readback Accuracy:  U <sub>2</sub> - U <sub>1</sub>                   |                               |
| DL3021 Setting       | Voltage                                                               | U <sub>0</sub> <sup>[2]</sup> |
|                      | U <sub>3</sub>                                                        |                               |
| Test Desult          | U <sub>4</sub>                                                        |                               |
| Test Result          | Programming Accuracy:  U <sub>3</sub> - U <sub>0</sub> <sup>[2]</sup> |                               |
|                      | Readback Accuracy:  U <sub>4</sub> - U <sub>3</sub>                   |                               |
| The voltage range is | s 15 V.                                                               |                               |
| Crasification        | Programming Accuracy                                                  | ±(0.05%+0.00375 V)            |
| Specification        | Readback Accuracy                                                     | ±(0.05%+0.003 V)              |
| DL3021 Setting       | Voltage                                                               | $U_{L}^{[1]}$                 |
|                      | U <sub>1</sub>                                                        |                               |
| Test Desult          | U <sub>2</sub>                                                        |                               |
| Test Result          | Programming Accuracy: $ U_1 - U_L^{[1]} $                             |                               |
|                      | Readback Accuracy:  U <sub>2</sub> - U <sub>1</sub>                   |                               |
| DL3021 Setting       | Voltage                                                               | U <sub>0</sub> <sup>[2]</sup> |
|                      | U <sub>3</sub>                                                        |                               |
| Test Desult          | U <sub>4</sub>                                                        |                               |
| Test Result          | Programming Accuracy:  U <sub>3</sub> - U <sub>0</sub> <sup>[2]</sup> |                               |
|                      | Readback Accuracy:  U <sub>4</sub> - U <sub>3</sub>                   |                               |

**Note**<sup>[1]</sup>: indicates the low voltage value of the input channel.

**Note**<sup>[2]</sup>: indicates the rated voltage of the input channel.

Table 2-6 Test Record Form of DL3021A CV Programming Accuracy and Readback Accuracy

|                      | Model                                                                 | DL3021A (150 V/40 A)          |
|----------------------|-----------------------------------------------------------------------|-------------------------------|
| The voltage range is | 150 V.                                                                |                               |
| Crecification        | Programming Accuracy                                                  | ±(0.05%+0.0375 V)             |
| Specification        | Readback Accuracy                                                     | ±(0.05%+0.03 V)               |
| DL3021A Setting      | Voltage                                                               | $U_{L}^{[1]}$                 |
|                      | U <sub>1</sub>                                                        |                               |
| Test Desult          | U <sub>2</sub>                                                        |                               |
| Test Result          | Programming Accuracy: $ U_1 - U_L^{[1]} $                             |                               |
|                      | Readback Accuracy:  U <sub>2</sub> - U <sub>1</sub>                   |                               |
| DL3021A Setting      | Voltage                                                               | U <sub>0</sub> <sup>[2]</sup> |
|                      | U <sub>3</sub>                                                        |                               |
| Test Desult          | U <sub>4</sub>                                                        |                               |
| Test Result          | Programming Accuracy:  U <sub>3</sub> - U <sub>0</sub> <sup>[2]</sup> |                               |
|                      | Readback Accuracy:  U <sub>4</sub> - U <sub>3</sub>                   |                               |
| The voltage range is | 15 V.                                                                 |                               |
| Specification        | Programming Accuracy                                                  | ±(0.05%+0.00375 V)            |
| Specification        | Readback Accuracy                                                     | ±(0.05%+0.003 V)              |
| DL3021A Setting      | Voltage                                                               | $U_{L}^{[1]}$                 |
|                      | U <sub>1</sub>                                                        |                               |
| Test Desult          | U <sub>2</sub>                                                        |                               |
| Test Result          | Programming Accuracy:  U <sub>1</sub> - U <sub>L</sub> <sup>[1]</sup> |                               |
|                      | Readback Accuracy:  U <sub>2</sub> - U <sub>1</sub>                   |                               |
| DL3021A Setting      | Voltage                                                               | U <sub>0</sub> <sup>[2]</sup> |
|                      | U <sub>3</sub>                                                        |                               |
| Test Result          | U <sub>4</sub>                                                        |                               |
| i est kesuit         | Programming Accuracy:  U <sub>3</sub> - U <sub>0</sub> <sup>[2]</sup> |                               |
|                      | Readback Accuracy:  U <sub>4</sub> - U <sub>3</sub>                   |                               |

**Note**<sup>[1]</sup>: indicates the low voltage value of the input channel. **Note**<sup>[2]</sup>: indicates the rated voltage of the input channel.

Table 2-7 Test Record Form of DL3031 CV Programming Accuracy and Readback

|                      | Model                                                                 | DL3031 (150 V/60 A)           |
|----------------------|-----------------------------------------------------------------------|-------------------------------|
| The voltage range is | s 150 V.                                                              |                               |
| Crecification        | Programming Accuracy                                                  | ±(0.05%+0.0375 V)             |
| Specification        | Readback Accuracy                                                     | ±(0.05%+0.03 V)               |
| DL3031 Setting       | Voltage                                                               | $U_{L}^{[1]}$                 |
|                      | U <sub>1</sub>                                                        |                               |
| Test Result          | U <sub>2</sub>                                                        |                               |
| Test Result          | Programming Accuracy:  U <sub>1</sub> - U <sub>L</sub> <sup>[1]</sup> |                               |
|                      | Readback Accuracy:  U <sub>2</sub> - U <sub>1</sub>                   |                               |
| DL3031 Setting       | Voltage                                                               | U <sub>0</sub> <sup>[2]</sup> |
|                      | U <sub>3</sub>                                                        |                               |
| Test Desult          | U <sub>4</sub>                                                        |                               |
| Test Result          | Programming Accuracy:  U <sub>3</sub> - U <sub>0</sub> <sup>[2]</sup> |                               |
|                      | Readback Accuracy:  U <sub>4</sub> - U <sub>3</sub>                   |                               |
| The voltage range is | s 15 V.                                                               |                               |
| Specification        | Programming Accuracy                                                  | ±(0.05%+0.00375 V)            |
| Specification        | Readback Accuracy                                                     | ±(0.05%+0.003 V)              |
| DL3031 Setting       | Voltage                                                               | $U_{L}^{[1]}$                 |
|                      | U <sub>1</sub>                                                        |                               |
| Test Result          | U <sub>2</sub>                                                        |                               |
| Test Result          | Programming Accuracy: $ U_1 - U_L^{[1]} $                             |                               |
|                      | Readback Accuracy:  U <sub>2</sub> - U <sub>1</sub>                   |                               |
| DL3031 Setting       | Voltage                                                               | U <sub>0</sub> <sup>[2]</sup> |
|                      | U <sub>3</sub>                                                        |                               |
| Test Desult          | U <sub>4</sub>                                                        |                               |
| Test Result          | Programming Accuracy:  U <sub>3</sub> - U <sub>0</sub> <sup>[2]</sup> |                               |
|                      | Readback Accuracy:  U <sub>4</sub> - U <sub>3</sub>                   |                               |

**Note**<sup>[1]</sup>: indicates the low voltage value of the input channel.

Note<sup>[2]</sup>: indicates the rated voltage of the input channel.

Table 2-8 Test Record Form of DL3031A CV Programming Accuracy and Readback Accuracy

|                             | Model                                                                 | DL3031A (150 V/60 A)          |  |  |  |  |
|-----------------------------|-----------------------------------------------------------------------|-------------------------------|--|--|--|--|
| The voltage range is 150 V. |                                                                       |                               |  |  |  |  |
| Crecification               | Programming Accuracy                                                  | ±(0.05%+0.0375 V)             |  |  |  |  |
| Specification               | Readback Accuracy                                                     | ±(0.05%+0.03 V)               |  |  |  |  |
| DL3031A Setting             | Voltage                                                               | $U_{L}^{[1]}$                 |  |  |  |  |
|                             | U <sub>1</sub>                                                        |                               |  |  |  |  |
| Test Desult                 | U <sub>2</sub>                                                        |                               |  |  |  |  |
| Test Result                 | Programming Accuracy: $ U_1 - U_L^{[1]} $                             |                               |  |  |  |  |
|                             | Readback Accuracy:  U <sub>2</sub> - U <sub>1</sub>                   |                               |  |  |  |  |
| DL3031A Setting             | Voltage                                                               | U <sub>0</sub> <sup>[2]</sup> |  |  |  |  |
|                             | U <sub>3</sub>                                                        |                               |  |  |  |  |
| Test Desult                 | U <sub>4</sub>                                                        |                               |  |  |  |  |
| Test Result                 | Programming Accuracy: $ U_3 - U_0^{[2]} $                             |                               |  |  |  |  |
|                             | Readback Accuracy:  U <sub>4</sub> - U <sub>3</sub>                   |                               |  |  |  |  |
| The voltage range is        | 15 V.                                                                 |                               |  |  |  |  |
| Crecification               | Programming Accuracy                                                  | ±(0.05%+0.00375 V)            |  |  |  |  |
| Specification               | Readback Accuracy                                                     | ±(0.05%+0.003 V)              |  |  |  |  |
| DL3031A Setting             | Voltage                                                               | $U_{L}^{[1]}$                 |  |  |  |  |
|                             | U <sub>1</sub>                                                        |                               |  |  |  |  |
| Test Desult                 | U <sub>2</sub>                                                        |                               |  |  |  |  |
| Test Result                 | Programming Accuracy: $ U_1 - U_L^{[1]} $                             |                               |  |  |  |  |
|                             | Readback Accuracy:  U <sub>2</sub> - U <sub>1</sub>                   |                               |  |  |  |  |
| DL3031A Setting             | Voltage                                                               | U <sub>0</sub> <sup>[2]</sup> |  |  |  |  |
|                             | U <sub>3</sub>                                                        |                               |  |  |  |  |
| Toot Docult                 | U <sub>4</sub>                                                        |                               |  |  |  |  |
| Test Result                 | Programming Accuracy:  U <sub>3</sub> - U <sub>0</sub> <sup>[2]</sup> |                               |  |  |  |  |
|                             | Readback Accuracy:  U <sub>4</sub> - U <sub>3</sub>                   |                               |  |  |  |  |

**Note**<sup>[1]</sup>: indicates the low voltage value of the input channel. **Note**<sup>[2]</sup>: indicates the rated voltage of the input channel.

## **CR Programming Accuracy**

### Preparations

Before performing the test, select the appropriate AC voltage via the "AC Selector" on the rear panel of the electronic load according to the AC voltage standard of your country (230 Vac is taken as an example in all the tests in this manual). At room temperature (25°C), connect the recommended devices specified in

"**Recommended Test Devices**" according to the connection method in Figure 2-3. During the test process, please set the AC voltage according to the selected voltage in "AC Selector" on the rear panel of the electronic load.

In the CR tests, a current sampling resistor (required to be calibrated) should be serially connected between the DC power supply and the electronic load. It is used to convert the current signal under test to the voltage signal for the measurement of related parameters.

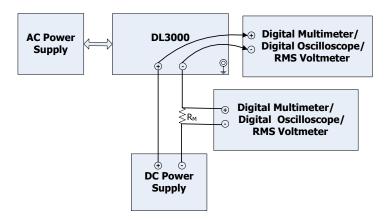



Figure 2-3 CR Test Connection

**Note:** In case of large current input, please use Sense terminal to compensate the voltage drop on the lead of the load.

### **Test Procedures**

CR programming accuracy refers to the error between the resistance setting of the channel and the actual resistance value when the electronic load is in CR mode.

The following section takes DL3031A as an example to test the CR programming accuracy of the DL3000 series.

**Note:** During the test, please select the corresponding test record form according to the model of the DL3000 series under test to set the corresponding parameters, record and calculate the corresponding specifications.

### Specification:

| Annual Accuracy <sup>[1]</sup> (25°C $\pm$ 5°C), $\pm$ (% of Output + Offset) |                                        |  |
|-------------------------------------------------------------------------------|----------------------------------------|--|
| Programming                                                                   | Vin/Rset*(0.2%)+0.2%IFS <sup>[2]</sup> |  |
| [1]                                                                           |                                        |  |

**Note**<sup>[1]</sup>: The accuracy specifications are acquired through calibration at 25°C after 1-hour warm-up. **Note**<sup>[2]</sup>: FS indicates the full scale.

### **Test Procedures:**

- 1. Power off DL3031A. Connect DL3031A, AC power supply, DC power supply, a current sampling resistor (with a resistance  $R_M 0.01 \Omega$ ), and a digital multimeter according to Figure 2-3 (Pay attention to the connection method for the current sampling resistor, the channel input terminals of DL3031A, and the digital multimeter). Connect the USB DEVICE interface on the rear panel of the electronic load to the PC via the USB cable.
- 2. Turn on the AC power supply, and then set its voltage to 230 V, the frequency to 50 Hz. Then, turn on the output.

**Note:** The voltage setting of the AC power supply should be matched with the AC voltage selector on the rear panel of DL3031A.

- 3. Power on DL3031A, and restores all the settings of the electronic load to its factory default settings.
- 4. Turn on the DC power supply, and set its output voltage to 30 V and output current to 15 A.
- 5. Measure the CR programming accuracy when the resistance range is a low range (0.08  $\Omega$  to 15  $\Omega$ ).
  - (1) Measure the CR programming accuracy when the resistance is set to a low value.
    - a) Power on DL3031A. Send the following commands via the remote

interface to set the resistance, and then enable the channel input.

| :SOUR:RES:RANG 15 | /*Sets the resistance range of the electronic     |
|-------------------|---------------------------------------------------|
|                   | to a low range (0.08 $\Omega$ to 15 $\Omega$ ).*/ |
| :SOUR:RES:LEV:IMM | /*Sets the resistance value of the electronic     |
| 0.125             | load to 0.125 Ω.*/                                |
| :SOUR:INP:STAT 1  | /*Enables the channel input.*/                    |

- b) Turn on the digital multimeter. Select the DC voltage (DCV) measurement function and set the range to "Auto". Make sure that the electronic load works in CR mode. Read the digital multimeter and record the reading (U<sub>1</sub> and U<sub>2</sub>) of the digital multimeter. Wherein, U<sub>1</sub> is the input voltage of the electronic load, and U<sub>2</sub> is the voltage of the current sampling resistance. Calculate the resistance of the electronic load according to the formula:  $R_1 = U_1/(U_2/R_M)$ .
- c) Calculate the CR programming accuracy  $|R_1 R_L|$ . Compare it with the specified specifications in Table 2-12. Wherein,  $R_L$  is the low resistance value.
- (2) Measure the CR programming accuracy when the resistance is set to a high value.
  - a) Power on DL3031A. Send the following commands via the remote interface to set the resistance, and then enable the channel input.

| :SOUR:RES:RANG 15 | /*Sets the resistance range of the electronic          |
|-------------------|--------------------------------------------------------|
|                   | load to a low range (0.08 $\Omega$ to 15 $\Omega$ ).*/ |
| :SOUR:RES:LEV:IMM | /*Sets the resistance value of the electronic          |
| 15                | load to 15 Ω.*/                                        |
| :SOUR:INP:STAT 1  | /*Enables the channel input.*/                         |

- b) Turn on the digital multimeter. Select the DC voltage (DCV) measurement function and set the range to "Auto". Make sure that the electronic load works in CR mode. Read the digital multimeter and record the reading (U<sub>3</sub> and U<sub>4</sub>) of the digital multimeter. Wherein, U<sub>3</sub> is the input voltage of the electronic load, and U<sub>4</sub> is the voltage of the current sampling resistance. Calculate the resistance of the electronic load according to the formula:  $R_2 = U_3/(U_4/R_M)$ .
- c) Calculate the CR programming accuracy  $|R_2 R_H|$ . Compare it with the specified specifications in Table 2-12. Wherein,  $R_H$  is the high resistance value.
- 6. Measure the CR programming accuracy when the resistance range is a high range (2  $\Omega$  to 15 k $\Omega$ ).

- (1) Measure the CR programming accuracy when the resistance is set to a low value.
  - a) Power on DL3031A. Send the following commands via the remote interface to set the resistance, and then enable the channel input.

| :SOUR:RES:RANG    | /*Sets the resistance range of the electronic          |
|-------------------|--------------------------------------------------------|
| 15000             | load to a high range (2 $\Omega$ to 15 k $\Omega$ ).*/ |
| :SOUR:RES:LEV:IMM | /*Sets the resistance value of the electronic          |
| 18                | load to 18 Ω.*/                                        |
| :SOUR:INP:STAT 1  | /*Enables the channel input.*/                         |

- b) Turn on the digital multimeter. Select the DC voltage (DCV) measurement function and set the range to "Auto". Make sure that the electronic load works in CR mode. Read the digital multimeter and record the reading ( $U_1$  and  $U_2$ ) of the digital multimeter. Wherein,  $U_1$  is the input voltage of the electronic load, and  $U_2$  is the voltage of the current sampling resistance. Calculate the resistance of the electronic load according to the formula:  $R_1 = U_1/(U_2/R_M)$ .
- c) Calculate the CR programming accuracy  $|R_1 R_L|$ . Compare it with the specified specifications in Table 2-12. Wherein,  $R_L$  is the low resistance value.
- (2) Measure the CR programming accuracy when the resistance is set to a high value.
  - a) Power on DL3031A. Send the following commands via the remote interface to set the resistance of the input channel, and then enable the channel input.

| :SOUR:RES:RANG    | /*Sets the resistance range of the electronic          |
|-------------------|--------------------------------------------------------|
| 15000             | load to a high range (2 $\Omega$ to 15 k $\Omega$ ).*/ |
| :SOUR:RES:LEV:IMM | /*Sets the resistance value of the electronic          |
| 15000             | load to 15000 Ω.*/                                     |
| :SOUR:INP:STAT 1  | /*Enables the channel input.*/                         |

- b) Turn on the digital multimeter. Select the DC voltage (DCV) measurement function and set the range to "Auto". Make sure that the electronic load works in CR mode. Read the digital multimeter and record the reading (U<sub>3</sub> and U<sub>4</sub>) of the digital multimeter. Wherein, U<sub>3</sub> is the input voltage of the electronic load, and U<sub>4</sub> is the voltage of the current sampling resistance. Calculate the resistance of the electronic load according to the formula:  $R_2 = U_3/(U_4/R_M)$ .
- c) Calculate the CR programming accuracy  $|R_2 R_H|$ . Compare it with the

specified specifications in Table 2-12. Wherein,  $R_{\rm H}$  is the high resistance value.

7. Send the following command via the remote interface to disable the channel input.

:SOUR:INP:STAT 0 /\*Disables the channel input.\*/

#### **Test Record Forms:**

| Table 2 0 Test Desard | Form of DI 2021 | CD Drogramming | Accuracy |
|-----------------------|-----------------|----------------|----------|
| Table 2-9 Test Record |                 | CK FIOglanning | ACCULACY |

|                                                                                    | Model                                                                             | DL3021 (150 V/40 A)           |  |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------|--|
| The resistance range of the electronic load is from 0.08 $\Omega$ to 15 $\Omega$ . |                                                                                   |                               |  |
|                                                                                    | -                                                                                 |                               |  |
| Specification                                                                      | Programming Accuracy                                                              | Vin/Rset*(0.2%)+0.08 A        |  |
| DL3021 Setting                                                                     | Resistance                                                                        | R <sub>L</sub> <sup>[1]</sup> |  |
|                                                                                    | U1                                                                                |                               |  |
| Test Result                                                                        | U <sub>2</sub>                                                                    |                               |  |
| Test Result                                                                        | $R_1 = U_1 / (U_2 / R_M^{[2]})$                                                   |                               |  |
|                                                                                    | Programming Accuracy: $ R_1 - R_L^{[1]} $                                         |                               |  |
| DL3021 Setting                                                                     | Resistance                                                                        | R <sub>H</sub> <sup>[3]</sup> |  |
|                                                                                    | U <sub>3</sub>                                                                    |                               |  |
| Test Result                                                                        | U <sub>4</sub>                                                                    |                               |  |
| Test Result                                                                        | $R_2 = U_3 / (U_4 / R_M^{[2]})$                                                   |                               |  |
|                                                                                    | Programming Accuracy:  R <sub>3</sub> - R <sub>H</sub> <sup>[3]</sup>             |                               |  |
| The resistance range                                                               | The resistance range of the electronic load is from 2 $\Omega$ to 15 k $\Omega$ . |                               |  |
| Specification                                                                      | Programming Accuracy                                                              | Vin/Rset*(0.2%)+0.08 A        |  |
| DL3021 Setting                                                                     | Resistance                                                                        | R <sub>L</sub> <sup>[1]</sup> |  |
|                                                                                    | U <sub>1</sub>                                                                    |                               |  |
| Toot Docult                                                                        | U <sub>2</sub>                                                                    |                               |  |
| Test Result                                                                        | $R_1 = U_1 / (U_2 / R_M^{[2]})$                                                   |                               |  |
|                                                                                    | Programming Accuracy:  R <sub>1</sub> - R <sub>L</sub> <sup>[1]</sup>             |                               |  |
| DL3021 Setting                                                                     | Resistance                                                                        | R <sub>H</sub> <sup>[3]</sup> |  |
| Test Desult                                                                        | U <sub>3</sub>                                                                    |                               |  |
|                                                                                    | U <sub>4</sub>                                                                    |                               |  |
| Test Result                                                                        | $R_2 = U_3 / (U_4 / R_M^{[2]})$                                                   |                               |  |
| N [1]                                                                              | Programming Accuracy:  R <sub>3</sub> - R <sub>H</sub> <sup>[3]</sup>             |                               |  |

| Model                                                                              |                                                                       | DL3021A (150 V/40 A)          |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------|
| The resistance range of the electronic load is from 0.08 $\Omega$ to 15 $\Omega$ . |                                                                       |                               |
| Specification                                                                      | Programming Accuracy                                                  | Vin/Rset*(0.2%)+0.08 A        |
| DL3021A Setting                                                                    | Resistance                                                            | R <sub>1</sub> <sup>[1]</sup> |
| DL3021A Setting                                                                    |                                                                       |                               |
|                                                                                    | U1                                                                    |                               |
| Test Result                                                                        | U <sub>2</sub>                                                        |                               |
|                                                                                    | $R_1 = U_1 / (U_2 / R_M^{[2]})$                                       |                               |
|                                                                                    | Programming Accuracy: $ R_1 - R_L^{[1]} $                             |                               |
| DL3021A Setting                                                                    | Resistance                                                            | R <sub>H</sub> <sup>[3]</sup> |
|                                                                                    | U <sub>3</sub>                                                        |                               |
| Test Desult                                                                        | U <sub>4</sub>                                                        |                               |
| Test Result                                                                        | $R_2 = U_3 / (U_4 / R_M^{[2]})$                                       |                               |
|                                                                                    | Programming Accuracy:  R <sub>3</sub> - R <sub>H</sub> <sup>[3]</sup> |                               |
| The resistance range                                                               | of the electronic load is from 2 $\Omega$ to 1                        | 5 kΩ.                         |
| Specification                                                                      | Programming Accuracy                                                  | Vin/Rset*(0.2%)+0.08 A        |
| DL3021A Setting                                                                    | Resistance                                                            | R <sub>L</sub> <sup>[1]</sup> |
|                                                                                    | U <sub>1</sub>                                                        |                               |
|                                                                                    | U <sub>2</sub>                                                        |                               |
| Test Result                                                                        | $R_1 = U_1 / (U_2 / R_M^{[2]})$                                       |                               |
|                                                                                    | Programming Accuracy: $ R_1 - R_L^{[1]} $                             |                               |
| DL3021A Setting                                                                    | Resistance                                                            | R <sub>H</sub> <sup>[3]</sup> |
| Test Desult                                                                        | U <sub>3</sub>                                                        |                               |
|                                                                                    | U <sub>4</sub>                                                        |                               |
| Test Result                                                                        | $R_2 = U_3 / (U_4 / R_M^{[2]})$                                       |                               |
|                                                                                    | Programming Accuracy:  R <sub>3</sub> - R <sub>H</sub> <sup>[3]</sup> |                               |

| Table 2-11 Test Record Form of DL3031 CR Programming Accuracy                      |                                                                                   |                               |  |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------|--|
| Model                                                                              |                                                                                   | DL3031 (150 V/60 A)           |  |
| The resistance range of the electronic load is from 0.08 $\Omega$ to 15 $\Omega$ . |                                                                                   |                               |  |
| Specification                                                                      | Programming Accuracy                                                              | Vin/Rset*(0.2%)+0.12 A        |  |
| DL3031 Setting                                                                     | Resistance                                                                        | R <sub>L</sub> <sup>[1]</sup> |  |
|                                                                                    | U <sub>1</sub>                                                                    |                               |  |
| Test Desult                                                                        | U <sub>2</sub>                                                                    |                               |  |
| Test Result                                                                        | $R_1 = U_1 / (U_2 / R_M^{[2]})$                                                   |                               |  |
|                                                                                    | Programming Accuracy:  R <sub>1</sub> - R <sub>L</sub> <sup>[1]</sup>             |                               |  |
| DL3031 Setting                                                                     | Resistance                                                                        | R <sub>H</sub> <sup>[3]</sup> |  |
|                                                                                    | U <sub>3</sub>                                                                    |                               |  |
| Test Desult                                                                        | U4                                                                                |                               |  |
| Test Result                                                                        | $R_2 = U_3 / (U_4 / R_M^{[2]})$                                                   |                               |  |
|                                                                                    | Programming Accuracy:  R <sub>3</sub> - R <sub>H</sub> <sup>[3]</sup>             |                               |  |
| The resistance range                                                               | The resistance range of the electronic load is from 2 $\Omega$ to 15 k $\Omega$ . |                               |  |
| Specification                                                                      | Programming Accuracy                                                              | Vin/Rset*(0.2%)+0.12 A        |  |
| DL3031 Setting                                                                     | Resistance                                                                        | R <sub>L</sub> <sup>[1]</sup> |  |
|                                                                                    | U <sub>1</sub>                                                                    |                               |  |
| Test Desails                                                                       | U <sub>2</sub>                                                                    |                               |  |
| Test Result                                                                        | $R_1 = U_1 / (U_2 / R_M^{[2]})$                                                   |                               |  |
|                                                                                    | Programming Accuracy: $ R_1 - R_L^{[1]} $                                         |                               |  |
| DL3031 Setting                                                                     | Resistance                                                                        | R <sub>H</sub> <sup>[3]</sup> |  |
| Test Result                                                                        | U <sub>3</sub>                                                                    |                               |  |
|                                                                                    | U <sub>4</sub>                                                                    |                               |  |
|                                                                                    | $R_2 = U_3 / (U_4 / R_M^{[2]})$                                                   |                               |  |
|                                                                                    | Programming Accuracy:  R <sub>3</sub> - R <sub>H</sub> <sup>[3]</sup>             |                               |  |
| Nate[1], indicates the set is                                                      |                                                                                   |                               |  |

Table 2-11 Test Record Form of DI 3031 CR Programming Accuracy

| Model                                                                              |                                                                                   | DL3031A (150 V/60 A)          |  |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------|--|
| The resistance range of the electronic load is from 0.08 $\Omega$ to 15 $\Omega$ . |                                                                                   |                               |  |
| Specification                                                                      | Programming Accuracy                                                              | Vin/Rset*(0.2%)+0.12 A        |  |
| DL3031A Setting                                                                    | Resistance                                                                        | R <sub>L</sub> <sup>[1]</sup> |  |
|                                                                                    | U <sub>1</sub>                                                                    |                               |  |
| Test Desult                                                                        | U <sub>2</sub>                                                                    |                               |  |
| Test Result                                                                        | $R_1 = U_1 / (U_2 / R_M^{[2]})$                                                   |                               |  |
|                                                                                    | Programming Accuracy: $ R_1 - R_L^{[1]} $                                         |                               |  |
| DL3031A Setting                                                                    | Resistance                                                                        | R <sub>H</sub> <sup>[3]</sup> |  |
|                                                                                    | U <sub>3</sub>                                                                    |                               |  |
| Test Result                                                                        | U <sub>4</sub>                                                                    |                               |  |
| Test Result                                                                        | $R_2 = U_3 / (U_4 / R_M^{[2]})$                                                   |                               |  |
|                                                                                    | Programming Accuracy: $ R_3 - R_H^{[3]} $                                         |                               |  |
| The resistance range                                                               | The resistance range of the electronic load is from 2 $\Omega$ to 15 k $\Omega$ . |                               |  |
| Specification                                                                      | Programming Accuracy                                                              | Vin/Rset*(0.2%)+0.12 A        |  |
| DL3031A Setting                                                                    | Resistance                                                                        | R <sub>L</sub> <sup>[1]</sup> |  |
|                                                                                    | U <sub>1</sub>                                                                    |                               |  |
| Test Result                                                                        | U <sub>2</sub>                                                                    |                               |  |
| Test Result                                                                        | $R_1 = U_1 / (U_2 / R_M^{[2]})$                                                   |                               |  |
|                                                                                    | Programming Accuracy: $ R_1 - R_L^{[1]} $                                         |                               |  |
| DL3031A Setting                                                                    | Resistance                                                                        | R <sub>H</sub> <sup>[3]</sup> |  |
| Test Result                                                                        | U <sub>3</sub>                                                                    |                               |  |
|                                                                                    | U4                                                                                |                               |  |
| iest Kesuit                                                                        | $R_2 = U_3 / (U_4 / R_M^{[2]})$                                                   |                               |  |
|                                                                                    | Programming Accuracy: $ R_3 - R_H^{[3]} $                                         |                               |  |

# Appendix

## **Appendix A: Test Record Forms**

## **DL3021 Performance Verification Test Record Form**

| RIGOL DL3021 Programmable DC Electronic Load |
|----------------------------------------------|
| Performance Verification Test Record Form    |

|                        | curacy and Readback Accuracy                                  |                               |
|------------------------|---------------------------------------------------------------|-------------------------------|
| Model                  |                                                               | DL3021 (150 V/40 A)           |
| The current range is 4 | ł0 A.                                                         |                               |
| Specification          | Programming Accuracy                                          | ±(0.05%+0.02 A)               |
| Specification          | Readback Accuracy                                             | ±(0.05%+0.02 A)               |
| DL3021 Setting         | Current                                                       | IL <sup>[1]</sup>             |
|                        | U <sub>1</sub>                                                |                               |
|                        | $I_1 = U_1 / R_M^{[2]}$                                       |                               |
| Test Result            | I <sub>2</sub>                                                |                               |
|                        | Programming Accuracy: $ I_1 - I_L^{[1]} $                     |                               |
|                        | Readback Accuracy:  I <sub>2</sub> - I <sub>1</sub>           |                               |
| DL3021 Setting         | Current                                                       | I <sub>0</sub> <sup>[3]</sup> |
|                        | U <sub>2</sub>                                                |                               |
|                        | $I_3 = U_2 / R_M^{[2]}$                                       |                               |
| Test Result            | I <sub>4</sub>                                                |                               |
|                        | Programming Accuracy: $ I_3 - I_0^{[3]} $                     |                               |
|                        | Readback Accuracy:  I <sub>4</sub> - I <sub>3</sub>           |                               |
| The current range is 4 | ł A.                                                          |                               |
| Guadification          | Programming Accuracy                                          | ±(0.05%+0.002 A)              |
| Specification          | Readback Accuracy                                             | ±(0.05%+0.002 A)              |
| DL3021 Setting         | Current                                                       | IL <sup>[1]</sup>             |
|                        | U <sub>1</sub>                                                |                               |
| Test Result            | I <sub>1</sub> =U <sub>1</sub> /R <sub>M</sub> <sup>[2]</sup> |                               |
|                        | I <sub>2</sub>                                                |                               |
|                        | Programming Accuracy: $ I_1 - I_L^{[1]} $                     |                               |
|                        | Readback Accuracy:  I <sub>2</sub> - I <sub>1</sub>           |                               |
| DL3021 Setting         | Current                                                       | I <sub>0</sub> <sup>[3]</sup> |
|                        | U <sub>2</sub>                                                |                               |
| Test Result            | $I_3 = U_2 / R_M^{[2]}$                                       |                               |
|                        | I <sub>4</sub>                                                |                               |

nd Daadback A 

\_

| Programming Accuracy: $ I_3 - I_0^{[3]} $ |  |
|-------------------------------------------|--|
| Readback Accuracy: $ I_4 - I_3 $          |  |

### CV Programming Accuracy and Readback Accuracy

| Model                       |                                                     | DL3021 (150 V/40 A)           |
|-----------------------------|-----------------------------------------------------|-------------------------------|
| The voltage range is 150 V. |                                                     |                               |
| Specification               | Programming Accuracy                                | ±(0.05%+0.0375 V)             |
|                             | Readback Accuracy                                   | ±(0.05%+0.03 V)               |
| DL3021 Setting              | Voltage                                             | U <sub>L</sub> <sup>[4]</sup> |
|                             | $U_1$                                               |                               |
| Test Result                 | U <sub>2</sub>                                      |                               |
| Test Result                 | Programming Accuracy: $ U_1 - U_L^{[4]} $           |                               |
|                             | Readback Accuracy:  U <sub>2</sub> - U <sub>1</sub> |                               |
| DL3021 Setting              | Voltage                                             | U <sub>0</sub> <sup>[5]</sup> |
|                             | U <sub>3</sub>                                      |                               |
| Test Result                 | $U_4$                                               |                               |
| Test Result                 | Programming Accuracy: $ U_3 - U_0^{[5]} $           |                               |
|                             | Readback Accuracy:  U <sub>4</sub> - U <sub>3</sub> |                               |
| The voltage range is        | s 15 V.                                             |                               |
| Specification               | Programming Accuracy                                | ±(0.05%+0.00375 V)            |
| Specification               | Readback Accuracy                                   | ±(0.05%+0.003 V)              |
| DL3021 Setting              | Voltage                                             | $U_{L}^{[4]}$                 |
|                             | $U_1$                                               |                               |
| Tost Bosult                 | U <sub>2</sub>                                      |                               |
| Test Result                 | Programming Accuracy: $ U_1 - U_1^{[4]} $           |                               |
|                             | Readback Accuracy:  U <sub>2</sub> - U <sub>1</sub> |                               |
| DL3021 Setting              | Voltage                                             | U <sub>0</sub> <sup>[5]</sup> |
| Test Result                 | U <sub>3</sub>                                      |                               |
|                             | U <sub>4</sub>                                      |                               |
|                             | Programming Accuracy: $ U_3 - U_0^{[5]} $           |                               |
|                             | Readback Accuracy:  U <sub>4</sub> - U <sub>3</sub> |                               |

|                                                                                    | Model                                                                 | DL3021 (150 V/40 A)           |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------|
| The resistance range of the electronic load is from 0.08 $\Omega$ to 15 $\Omega$ . |                                                                       |                               |
| Specification                                                                      | Programming Accuracy                                                  | Vin/Rset*(0.2%)+0.08 A        |
| DL3021 Setting                                                                     | Resistance                                                            | R <sub>L</sub> <sup>[6]</sup> |
|                                                                                    | U <sub>1</sub>                                                        |                               |
| Test Result                                                                        | U <sub>2</sub>                                                        |                               |
| Test Result                                                                        | $R_1 = U_1 / (U_2 / R_M^{[2]})$                                       |                               |
|                                                                                    | Programming Accuracy: $ R_1 - R_L^{[6]} $                             |                               |
| DL3021 Setting                                                                     | Resistance                                                            | R <sub>H</sub> <sup>[7]</sup> |
|                                                                                    | U <sub>3</sub>                                                        |                               |
| Test Desult                                                                        | U <sub>4</sub>                                                        |                               |
| Test Result                                                                        | $R_2 = U_3 / (U_4 / R_M^{[2]})$                                       |                               |
|                                                                                    | Programming Accuracy:  R <sub>3</sub> - R <sub>H</sub> <sup>[7]</sup> |                               |
| The resistance range                                                               | of the electronic load is from 2 $\Omega$ to 15                       | kΩ.                           |
| Specification                                                                      | Programming Accuracy                                                  | Vin/Rset*(0.2%)+0.08 A        |
| DL3021 Setting                                                                     | Resistance                                                            | R <sub>L</sub> <sup>[6]</sup> |
| Test Result                                                                        | U <sub>1</sub>                                                        |                               |
|                                                                                    | U <sub>2</sub>                                                        |                               |
|                                                                                    | $R_1 = U_1 / (U_2 / R_M^{[2]})$                                       |                               |
|                                                                                    | Programming Accuracy: $ R_1 - R_L^{[6]} $                             |                               |
| DL3021 Setting                                                                     | Resistance                                                            | R <sub>H</sub> <sup>[7]</sup> |
| Test Result                                                                        | U <sub>3</sub>                                                        |                               |
|                                                                                    | U4                                                                    |                               |
|                                                                                    | $R_2 = U_3 / (U_4 / R_M^{[2]})$                                       |                               |
|                                                                                    | Programming Accuracy:  R <sub>3</sub> - R <sub>H</sub> <sup>[7]</sup> |                               |

**Note**<sup>[1]</sup>: indicates the low current value of the input channel.

Note<sup>[2]</sup>: Indicates the low current value of the input channel. Note<sup>[2]</sup>:  $R_M = 0.01 \Omega$ . Note<sup>[3]</sup>: indicates the rated current of the input channel. Note<sup>[4]</sup>: indicates the low voltage value of the input channel. Note<sup>[5]</sup>: indicates the rated voltage of the input channel. Note<sup>[6]</sup>: indicates the set low resistance value.

## **DL3021A Performance Verification Test Record Form**

**RIGOL** DL3021A Programmable DC Electronic Load Performance Verification Test Record Form

| CC Programming Ac      | curacy and Readback Accuracy                                  |                               |
|------------------------|---------------------------------------------------------------|-------------------------------|
|                        | Model                                                         | DL3021A (150 V/40 A)          |
| The current range is 4 | 10 A.                                                         |                               |
| Specification          | Programming Accuracy                                          | ±(0.05%+0.02 A)               |
| Specification          | Readback Accuracy                                             | ±(0.05%+0.02 A)               |
| DL3021A Setting        | Current                                                       | $I_{L}^{[1]}$                 |
|                        | U <sub>1</sub>                                                |                               |
|                        | I <sub>1</sub> =U <sub>1</sub> /R <sub>M</sub> <sup>[2]</sup> |                               |
| Test Result            | I <sub>2</sub>                                                |                               |
|                        | Programming Accuracy: $ I_1 - I_L^{[1]} $                     |                               |
|                        | Readback Accuracy:  I <sub>2</sub> - I <sub>1</sub>           |                               |
| DL3021A Setting        | Current                                                       | I <sub>0</sub> <sup>[3]</sup> |
|                        | U <sub>2</sub>                                                |                               |
|                        | I <sub>3</sub> =U <sub>2</sub> /R <sub>M</sub> <sup>[2]</sup> |                               |
| Test Result            | I4                                                            |                               |
|                        | Programming Accuracy: $ I_3 - I_0^{[3]} $                     |                               |
|                        | Readback Accuracy:  I <sub>4</sub> - I <sub>3</sub>           |                               |
| The current range is 4 | 1 A.                                                          |                               |
| Cara (Caral) and       | Programming Accuracy                                          | ±(0.05%+0.002 A)              |
| Specification          | Readback Accuracy                                             | ±(0.05%+0.002 A)              |
| DL3021A Setting        | Current                                                       | IL <sup>[1]</sup>             |
|                        | U <sub>1</sub>                                                |                               |
|                        | I <sub>1</sub> =U <sub>1</sub> /R <sub>M</sub> <sup>[2]</sup> |                               |
| Test Result            | I <sub>2</sub>                                                |                               |
|                        | Programming Accuracy: $ I_1 - I_L^{[1]} $                     |                               |
|                        | Readback Accuracy:  I <sub>2</sub> - I <sub>1</sub>           |                               |
| DL3021A Setting        | Current                                                       | I <sub>0</sub> <sup>[3]</sup> |
|                        | U <sub>2</sub>                                                |                               |
|                        | I <sub>3</sub> =U <sub>2</sub> /R <sub>M</sub> <sup>[2]</sup> |                               |
| Test Result            | I4                                                            |                               |
|                        | Programming Accuracy: $ I_3 - I_0^{[3]} $                     |                               |
|                        | Readback Accuracy:  I <sub>4</sub> - I <sub>3</sub>           |                               |

#### CV Programming Accuracy and Readback Accuracy

|                        | Model                                                                 | DL3021A (150 V/40 A)          |  |
|------------------------|-----------------------------------------------------------------------|-------------------------------|--|
| The voltage range is 1 | 150 V.                                                                |                               |  |
|                        | Programming Accuracy                                                  | ±(0.05%+0.0375 V)             |  |
| Specification          | Readback Accuracy                                                     | ±(0.05%+0.03 V)               |  |
| DL3021A Setting        | Voltage                                                               | U <sub>L</sub> <sup>[4]</sup> |  |
|                        | U <sub>1</sub>                                                        |                               |  |
| Test Desult            | U <sub>2</sub>                                                        |                               |  |
| Test Result            | Programming Accuracy: $ U_1 - U_L^{[4]} $                             |                               |  |
|                        | Readback Accuracy:  U <sub>2</sub> - U <sub>1</sub>                   |                               |  |
| DL3021A Setting        | Voltage                                                               | U <sub>0</sub> <sup>[5]</sup> |  |
|                        | U <sub>3</sub>                                                        |                               |  |
| Test Result            | U <sub>4</sub>                                                        |                               |  |
| Test Result            | Programming Accuracy:  U <sub>3</sub> - U <sub>0</sub> <sup>[5]</sup> |                               |  |
|                        | Readback Accuracy:  U <sub>4</sub> - U <sub>3</sub>                   |                               |  |
| The voltage range is 1 | 15 V.                                                                 |                               |  |
| Specification          | Programming Accuracy                                                  | ±(0.05%+0.00375 V)            |  |
| Specification          | Readback Accuracy                                                     | ±(0.05%+0.003 V)              |  |
| DL3021A Setting        | Voltage                                                               | U <sub>L</sub> <sup>[4]</sup> |  |
|                        | U <sub>1</sub>                                                        |                               |  |
| Test Result            | U <sub>2</sub>                                                        |                               |  |
| Test Result            | Programming Accuracy: $ U_1 - U_L^{[4]} $                             |                               |  |
|                        | Readback Accuracy:  U <sub>2</sub> - U <sub>1</sub>                   |                               |  |
| DL3021A Setting        | Voltage                                                               | U <sub>0</sub> <sup>[5]</sup> |  |
|                        | U <sub>3</sub>                                                        |                               |  |
| Test Result            | U <sub>4</sub>                                                        |                               |  |
| iest Result            | Programming Accuracy: $ U_3 - U_0^{[5]} $                             |                               |  |
|                        | Readback Accuracy:  U <sub>4</sub> - U <sub>3</sub>                   |                               |  |

|                                                                                    | Model                                                                 | DL3021A (150 V/40 A)          |  |  |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------|--|--|
| The resistance range of the electronic load is from 0.08 $\Omega$ to 15 $\Omega$ . |                                                                       |                               |  |  |
| Specification                                                                      | Programming Accuracy                                                  | Vin/Rset*(0.2%)+0.08 A        |  |  |
| DL3021A Setting                                                                    | Resistance                                                            | R <sub>L</sub> <sup>[6]</sup> |  |  |
|                                                                                    | U <sub>1</sub>                                                        |                               |  |  |
| Test Result                                                                        | U <sub>2</sub>                                                        |                               |  |  |
| Test Result                                                                        | $R_1 = U_1 / (U_2 / R_M^{[2]})$                                       |                               |  |  |
|                                                                                    | Programming Accuracy: $ R_1 - R_L^{[6]} $                             |                               |  |  |
| DL3021A Setting                                                                    | Resistance                                                            | R <sub>H</sub> <sup>[7]</sup> |  |  |
|                                                                                    | U <sub>3</sub>                                                        |                               |  |  |
| Test Result                                                                        | U <sub>4</sub>                                                        |                               |  |  |
| lest Result                                                                        | $R_2 = U_3 / (U_4 / R_M^{[2]})$                                       |                               |  |  |
|                                                                                    | Programming Accuracy: $ R_3 - R_H^{[7]} $                             |                               |  |  |
| The resistance range of the electronic load is from 2 $\Omega$ to 15 k $\Omega$ .  |                                                                       |                               |  |  |
| Specification                                                                      | Programming Accuracy                                                  | Vin/Rset*(0.2%)+0.08 A        |  |  |
| DL3021A Setting                                                                    | Resistance                                                            | R <sub>L</sub> <sup>[6]</sup> |  |  |
|                                                                                    | U <sub>1</sub>                                                        |                               |  |  |
| Test Result                                                                        | U <sub>2</sub>                                                        |                               |  |  |
| Test Result                                                                        | $R_1 = U_1 / (U_2 / R_M^{[2]})$                                       |                               |  |  |
|                                                                                    | Programming Accuracy: $ R_1 - R_L^{[6]} $                             |                               |  |  |
| DL3021A Setting                                                                    | Resistance                                                            | R <sub>H</sub> <sup>[7]</sup> |  |  |
|                                                                                    | U <sub>3</sub>                                                        |                               |  |  |
| Test Result                                                                        | U4                                                                    |                               |  |  |
| lest Result                                                                        | $R_2 = U_3 / (U_4 / R_M^{[2]})$                                       |                               |  |  |
|                                                                                    | Programming Accuracy:  R <sub>3</sub> - R <sub>H</sub> <sup>[7]</sup> |                               |  |  |

**Note**<sup>[1]</sup>: indicates the low current value of the input channel.

Note<sup>[2]</sup>: R<sub>M</sub> = 0.01  $\Omega$ . Note<sup>[3]</sup>: indicates the rated current of the input channel. Note<sup>[4]</sup>: indicates the low voltage value of the input channel.

**Note**<sup>[5]</sup>: indicates the rated voltage of the input channel.

**Note**<sup>[6]</sup>: indicates the set low resistance value.

RIGOL DL3031 Programmable DC Electronic Load Performance Verification Test Record Form

| CC Programming Ac         | ccuracy and Readback Accuracy                                         |                               |  |  |
|---------------------------|-----------------------------------------------------------------------|-------------------------------|--|--|
|                           | Model                                                                 | DL3031 (150 V/60 A)           |  |  |
| The current range is 6    | 50 A.                                                                 |                               |  |  |
| Specification             | Programming Accuracy                                                  | ±(0.05%+0.03 A)               |  |  |
| Specification             | Readback Accuracy                                                     | ±(0.05%+0.03 A)               |  |  |
| DL3031 Setting            | Current IL <sup>[1]</sup>                                             |                               |  |  |
|                           | U <sub>1</sub>                                                        |                               |  |  |
|                           | $I_1 = U_1 / R_M^{[2]}$                                               |                               |  |  |
| Test Result               | I <sub>2</sub>                                                        |                               |  |  |
|                           | Programming Accuracy: $ I_1 - I_L^{[1]} $                             |                               |  |  |
|                           | Readback Accuracy:  I <sub>2</sub> - I <sub>1</sub>                   |                               |  |  |
| DL3031 Setting            | Current                                                               | I <sub>0</sub> <sup>[3]</sup> |  |  |
|                           | U <sub>2</sub>                                                        |                               |  |  |
|                           | $I_3 = U_2 / R_M^{[2]}$                                               |                               |  |  |
| Test Result               | I4                                                                    |                               |  |  |
|                           | Programming Accuracy: $ I_3 - I_0^{[3]} $                             |                               |  |  |
|                           | Readback Accuracy:  I <sub>4</sub> - I <sub>3</sub>                   |                               |  |  |
| The current range is 6 A. |                                                                       |                               |  |  |
| Crecification             | Programming Accuracy                                                  | ±(0.05%+0.003 A)              |  |  |
| Specification             | Readback Accuracy                                                     | ±(0.05%+0.003 A)              |  |  |
| DL3031 Setting            | Current                                                               | IL <sup>[1]</sup>             |  |  |
|                           | U <sub>1</sub>                                                        |                               |  |  |
|                           | $I_1 = U_1 / R_M^{[2]}$                                               |                               |  |  |
| Test Result               | I <sub>2</sub>                                                        |                               |  |  |
|                           | Programming Accuracy: $ I_1 - I_L^{[1]} $                             |                               |  |  |
|                           | Readback Accuracy:  I <sub>2</sub> - I <sub>1</sub>                   |                               |  |  |
| DL3031 Setting            | Current                                                               | I <sub>0</sub> <sup>[3]</sup> |  |  |
|                           | U <sub>2</sub>                                                        |                               |  |  |
|                           | I <sub>3</sub> =U <sub>2</sub> /R <sub>M</sub> <sup>[2]</sup>         |                               |  |  |
| Test Result               | I4                                                                    |                               |  |  |
|                           | Programming Accuracy:  I <sub>3</sub> - I <sub>0</sub> <sup>[3]</sup> |                               |  |  |
|                           | Readback Accuracy:  I <sub>4</sub> - I <sub>3</sub>                   |                               |  |  |
|                           |                                                                       |                               |  |  |

~~ P . . ... . .

| CV Programming Accura | cy and Readback Accuracy |
|-----------------------|--------------------------|
|-----------------------|--------------------------|

|                      | Model                                               | DL3031 (150 V/60 A)           |
|----------------------|-----------------------------------------------------|-------------------------------|
| The voltage range is | s 150 V.                                            |                               |
|                      | Programming Accuracy                                | ±(0.05%+0.0375 V)             |
| Specification        | Readback Accuracy                                   | ±(0.05%+0.03 V)               |
| DL3031 Setting       | Voltage                                             | $U_{L}^{[4]}$                 |
|                      | U <sub>1</sub>                                      |                               |
| Test Desult          | U <sub>2</sub>                                      |                               |
| Test Result          | Programming Accuracy: $ U_1 - U_L^{[4]} $           |                               |
|                      | Readback Accuracy:  U <sub>2</sub> - U <sub>1</sub> |                               |
| DL3031 Setting       | Voltage                                             | U <sub>0</sub> <sup>[5]</sup> |
|                      | U <sub>3</sub>                                      |                               |
| Test Result          | U <sub>4</sub>                                      |                               |
| Test Result          | Programming Accuracy: $ U_3 - U_0^{[5]} $           |                               |
|                      | Readback Accuracy: $ U_4 - U_3 $                    |                               |
| The voltage range is | s 15 V.                                             |                               |
| Specification        | Programming Accuracy                                | ±(0.05%+0.00375 V)            |
| Specification        | Readback Accuracy                                   | ±(0.05%+0.003 V)              |
| DL3031 Setting       | Voltage                                             | $U_{L}^{[4]}$                 |
|                      | U <sub>1</sub>                                      |                               |
| Test Result          | U <sub>2</sub>                                      |                               |
| Test Result          | Programming Accuracy: $ U_1 - U_L^{[4]} $           |                               |
|                      | Readback Accuracy: $ U_2 - U_1 $                    |                               |
| DL3031 Setting       | Voltage                                             | U <sub>0</sub> <sup>[5]</sup> |
|                      | U <sub>3</sub>                                      |                               |
| Test Result          | U <sub>4</sub>                                      |                               |
| iest Result          | Programming Accuracy: $ U_3 - U_0^{[5]} $           |                               |
|                      | Readback Accuracy: $ U_4 - U_3 $                    |                               |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DL3031 (150 V/60 A)                                                   |                               |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------|--|--|
| The resistance range of the electronic load is from 0.08 $\Omega$ to 15 $\Omega$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                       |                               |  |  |
| Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Programming Accuracy                                                  | Vin/Rset*(0.2%)+0.12 A        |  |  |
| DL3031 Setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Resistance R <sub>L</sub> <sup>[6]</sup>                              |                               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U <sub>1</sub>                                                        |                               |  |  |
| Test Desult                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U <sub>2</sub>                                                        |                               |  |  |
| Test Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $R_1 = U_1 / (U_2 / R_M^{[2]})$                                       |                               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Programming Accuracy:  R <sub>1</sub> - R <sub>L</sub> <sup>[6]</sup> |                               |  |  |
| DL3031 Setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Resistance                                                            | R <sub>H</sub> <sup>[7]</sup> |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U <sub>3</sub>                                                        |                               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U <sub>4</sub>                                                        |                               |  |  |
| Test Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $R_2 = U_3 / (U_4 / R_M^{[2]})$                                       |                               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Programming Accuracy:  R <sub>3</sub> - R <sub>H</sub> <sup>[7]</sup> |                               |  |  |
| The resistance range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of the electronic load is from 2 $\Omega$ to 15                       | kΩ.                           |  |  |
| Specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Programming Accuracy                                                  | Vin/Rset*(0.2%)+0.12 A        |  |  |
| DL3031 Setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Resistance                                                            | R <sub>L</sub> <sup>[6]</sup> |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U <sub>1</sub>                                                        |                               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U <sub>2</sub>                                                        |                               |  |  |
| Test Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $R_1 = U_1 / (U_2 / R_M^{[2]})$                                       |                               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Programming Accuracy: $ R_1 - R_L^{[6]} $                             |                               |  |  |
| DL3031 Setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Resistance                                                            | R <sub>H</sub> <sup>[7]</sup> |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U <sub>3</sub>                                                        |                               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U <sub>4</sub>                                                        |                               |  |  |
| Test Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $R_2 = U_3 / (U_4 / R_M^{[2]})$                                       |                               |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Programming Accuracy:  R <sub>3</sub> - R <sub>H</sub> <sup>[7]</sup> |                               |  |  |
| Note <sup>[1]</sup> : indicates the low of t | current value of the input channel.                                   |                               |  |  |

Note<sup>[2]</sup>: Indicates the low current value of the input channel. Note<sup>[2]</sup>:  $R_M = 0.01 \Omega$ . Note<sup>[3]</sup>: indicates the rated current of the input channel. Note<sup>[4]</sup>: indicates the low voltage value of the input channel. Note<sup>[5]</sup>: indicates the rated voltage of the input channel. Note<sup>[6]</sup>: indicates the set low resistance value.

## **DL3031A Performance Verification Test Record Form**

**RIGOL** DL3031A Programmable DC Electronic Load Performance Verification Test Record Form

|                        | DL3031A (150 V/60 A)                                          |                                       |
|------------------------|---------------------------------------------------------------|---------------------------------------|
| The current range is ( | 50 A.                                                         |                                       |
|                        | Programming Accuracy                                          | ±(0.05%+0.03 A)                       |
| Specification          | Readback Accuracy                                             | ±(0.05%+0.03 A)                       |
| DL3031A Setting        | Current                                                       | $I_L^{[1]}$                           |
|                        | U <sub>1</sub>                                                |                                       |
|                        | I <sub>1</sub> =U <sub>1</sub> /R <sub>M</sub> <sup>[2]</sup> |                                       |
| Test Result            | I <sub>2</sub>                                                |                                       |
|                        | Programming Accuracy: $ I_1 - I_L^{[1]} $                     |                                       |
|                        | Readback Accuracy:  I <sub>2</sub> - I <sub>1</sub>           |                                       |
| DL3031A Setting        | Current                                                       | I <sub>0</sub> <sup>[3]</sup>         |
|                        | U <sub>2</sub>                                                |                                       |
|                        | $I_3 = U_2 / R_M^{[2]}$                                       |                                       |
| Test Result            | I4                                                            |                                       |
|                        | Programming Accuracy: $ I_3 - I_0^{[3]} $                     |                                       |
|                        | Readback Accuracy:  I <sub>4</sub> - I <sub>3</sub>           |                                       |
| The current range is ( | 5 A.                                                          |                                       |
| Specification          | Programming Accuracy                                          | ±(0.05%+0.003 A)                      |
| Specification          | Readback Accuracy                                             | ±(0.05%+0.003 A)<br>IL <sup>[1]</sup> |
| DL3031A Setting        | Current                                                       | $I_{L}^{[1]}$                         |
|                        | U <sub>1</sub>                                                |                                       |
|                        | $I_1 = U_1 / R_M^{[2]}$                                       |                                       |
| Test Result            | I <sub>2</sub>                                                |                                       |
|                        | Programming Accuracy: $ I_1 - I_L^{[1]} $                     |                                       |
|                        | Readback Accuracy: $ I_2 - I_1 $                              |                                       |
| DL3031A Setting        | Current                                                       | I <sub>0</sub> <sup>[3]</sup>         |
|                        | U <sub>2</sub>                                                |                                       |
|                        | $I_3 = U_2 / R_M^{[2]}$                                       |                                       |
| Test Result            | I4                                                            |                                       |
|                        | Programming Accuracy: $ I_3 - I_0^{[3]} $                     |                                       |
|                        | Readback Accuracy:  I <sub>4</sub> - I <sub>3</sub>           |                                       |

CV Programming Accuracy and Readback Accuracy

|                        | Model                                                                 | DL3031A (150 V/60 A)          |  |  |  |
|------------------------|-----------------------------------------------------------------------|-------------------------------|--|--|--|
| The voltage range is : | The voltage range is 150 V.                                           |                               |  |  |  |
|                        | Programming Accuracy                                                  | ±(0.05%+0.0375 V)             |  |  |  |
| Specification          | Readback Accuracy                                                     | ±(0.05%+0.03 V)               |  |  |  |
| DL3031A Setting        | Voltage                                                               | U <sub>L</sub> <sup>[4]</sup> |  |  |  |
|                        | U <sub>1</sub>                                                        |                               |  |  |  |
| Test Desult            | U <sub>2</sub>                                                        |                               |  |  |  |
| Test Result            | Programming Accuracy: $ U_1 - U_1^{[4]} $                             |                               |  |  |  |
|                        | Readback Accuracy:  U <sub>2</sub> - U <sub>1</sub>                   |                               |  |  |  |
| DL3031A Setting        | Voltage                                                               | U0 <sup>[5]</sup>             |  |  |  |
|                        | U <sub>3</sub>                                                        |                               |  |  |  |
| Test Desult            | U <sub>4</sub>                                                        |                               |  |  |  |
| Test Result            | Programming Accuracy: $ U_3 - U_0^{[5]} $                             |                               |  |  |  |
|                        | Readback Accuracy:  U <sub>4</sub> - U <sub>3</sub>                   |                               |  |  |  |
| The voltage range is 2 | 15 V.                                                                 |                               |  |  |  |
| Specification          | Programming Accuracy                                                  | ±(0.05%+0.00375 V)            |  |  |  |
| Specification          | Readback Accuracy                                                     | ±(0.05%+0.003 V)              |  |  |  |
| DL3031A Setting        | Voltage                                                               | U <sub>L</sub> <sup>[4]</sup> |  |  |  |
|                        | U <sub>1</sub>                                                        |                               |  |  |  |
| Test Result            | U <sub>2</sub>                                                        |                               |  |  |  |
| Test Result            | Programming Accuracy:  U <sub>1</sub> - U <sub>L</sub> <sup>[4]</sup> |                               |  |  |  |
|                        | Readback Accuracy:  U <sub>2</sub> - U <sub>1</sub>                   |                               |  |  |  |
| DL3031A Setting        | Voltage                                                               | U <sub>0</sub> <sup>[5]</sup> |  |  |  |
|                        | U <sub>3</sub>                                                        |                               |  |  |  |
| Test Result            | U <sub>4</sub>                                                        |                               |  |  |  |
| i est kesuit           | Programming Accuracy: $ U_3 - U_0^{[5]} $                             |                               |  |  |  |
|                        | Readback Accuracy:  U <sub>4</sub> - U <sub>3</sub>                   |                               |  |  |  |

|                                                                                    | Model                                                                 | DL3031A (150 V/60 A)          |  |  |
|------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------|--|--|
| The resistance range of the electronic load is from 0.08 $\Omega$ to 15 $\Omega$ . |                                                                       |                               |  |  |
| Specification                                                                      | Programming Accuracy                                                  | Vin/Rset*(0.2%)+0.12 A        |  |  |
| DL3031A Setting                                                                    | Resistance                                                            | R <sub>L</sub> <sup>[6]</sup> |  |  |
|                                                                                    | U <sub>1</sub>                                                        |                               |  |  |
| Test Result                                                                        | U <sub>2</sub>                                                        |                               |  |  |
| lest Result                                                                        | $R_1 = U_1 / (U_2 / R_M^{[2]})$                                       |                               |  |  |
|                                                                                    | Programming Accuracy:  R <sub>1</sub> - R <sub>L</sub> <sup>[6]</sup> |                               |  |  |
| DL3031A Setting                                                                    | Resistance                                                            | R <sub>H</sub> <sup>[7]</sup> |  |  |
|                                                                                    | U <sub>3</sub>                                                        |                               |  |  |
| Test Desult                                                                        | U <sub>4</sub>                                                        |                               |  |  |
| Test Result                                                                        | $R_2 = U_3 / (U_4 / R_M^{[2]})$                                       |                               |  |  |
|                                                                                    | Programming Accuracy:  R <sub>3</sub> - R <sub>H</sub> <sup>[7]</sup> |                               |  |  |
| The resistance range of the electronic load is from 2 $\Omega$ to 15 k $\Omega$ .  |                                                                       |                               |  |  |
| Specification                                                                      | Programming Accuracy                                                  | Vin/Rset*(0.2%)+0.12 A        |  |  |
| DL3031A Setting                                                                    | Resistance                                                            | R <sub>L</sub> <sup>[6]</sup> |  |  |
|                                                                                    | U <sub>1</sub>                                                        |                               |  |  |
| Test Result                                                                        | U <sub>2</sub>                                                        |                               |  |  |
| Test Result                                                                        | $R_1 = U_1 / (U_2 / R_M^{[2]})$                                       |                               |  |  |
|                                                                                    | Programming Accuracy: $ R_1 - R_L^{[6]} $                             |                               |  |  |
| DL3031A Setting                                                                    | Resistance                                                            | R <sub>H</sub> <sup>[7]</sup> |  |  |
|                                                                                    | U <sub>3</sub>                                                        |                               |  |  |
| Test Result                                                                        | U <sub>4</sub>                                                        |                               |  |  |
| lest Result                                                                        | $R_2 = U_3 / (U_4 / R_M^{[2]})$                                       |                               |  |  |
|                                                                                    | Programming Accuracy:  R <sub>3</sub> - R <sub>H</sub> <sup>[7]</sup> |                               |  |  |

**Note**<sup>[1]</sup>: indicates the low current value of the input channel.

Note<sup>[2]</sup>: R<sub>M</sub> = 0.01  $\Omega$ . Note<sup>[3]</sup>: indicates the rated current of the input channel. Note<sup>[4]</sup>: indicates the low voltage value of the input channel.

**Note**<sup>[5]</sup>: indicates the rated voltage of the input channel.

**Note**<sup>[6]</sup>: indicates the set low resistance value.

## **Appendix B: Specifications**

All the technical specifications are guaranteed when the instrument has been working for more than 30 minutes under the specified operating temperature.

| <b>DC Input(0℃~ 40℃)</b> |           |          |                  |                                   |
|--------------------------|-----------|----------|------------------|-----------------------------------|
| Model                    | Voltage   | Current  | Maximum<br>Power | Minimum Operating Voltage<br>(DC) |
| DL3021                   | 0 ~ 150 V | 0 ~ 40 A | 200 W            | 40 A@1 V                          |
| DL3021A                  | 0 ~ 130 v | 0 ~ 40 A | 200 W            | V LWA OF                          |
| DL3031                   | 0 ~ 150 V | 0 ~ 60 A | 350 W            | 60 4@1 2 1/                       |
| DL3031A                  | 0 ~ 100 V | U ~ 00 A | 330 W            | 60 A@1.3 V                        |

| CC Mode |          |                           |                                        |                                           |  |
|---------|----------|---------------------------|----------------------------------------|-------------------------------------------|--|
| Model   | Range    | Programming<br>Resolution | Programming<br>Accuracy <sup>[1]</sup> | Programming<br>Temperature<br>Coefficient |  |
| DL3021  | 0 ~ 4 A  | 1 mA                      | ±(0.05%+0.05%FS <sup>[2]</sup> )       | <b>100 ppm/</b> ℃                         |  |
| DL3021A | 0 ~ 40 A | 1 MA                      | ±(0.05%+0.05%F3)                       |                                           |  |
| DL3031  | 0 ~ 6 A  | 1 mA                      |                                        | 100 ppm/°C                                |  |
| DL3031A | 0 ~ 60 A | I MA                      | ±(0.05%+0.05%FS)                       | <b>100 ppm/</b> ℃                         |  |

| CV Mode | CV Mode   |                           |                      |                                           |  |
|---------|-----------|---------------------------|----------------------|-------------------------------------------|--|
| Model   | Range     | Programming<br>Resolution | Programming Accuracy | Programming<br>Temperature<br>Coefficient |  |
| DL3021  | 0 ~ 15 V  | 1 mV                      | ±(0.05%+0.02%FS)     | <b>50 ppm/</b> ℃                          |  |
| DL3021A | 0 ~ 150 V | 5 mV                      | ±(0.05%+0.025%FS)    |                                           |  |
| DL3031  | 0 ~ 15 V  | 1 mV                      | ±(0.05%+0.02%FS)     | <b>50 ppm/°</b> C                         |  |
| DL3031A | 0 ~ 150 V | 5 mV                      | ±(0.05%+0.025%FS)    |                                           |  |

| CR Mode |                                   |                           |                                     |
|---------|-----------------------------------|---------------------------|-------------------------------------|
| Model   | Range <sup>[3]</sup>              | Programming<br>Resolution | Programming Accuracy <sup>[4]</sup> |
| DL3021  | 0.08 Ω~15 Ω<br>(0.0667 S~12.5 S)  | 2 mA/Vsense               | Vin/Rset*(0.2%)+0.2%IFS             |
| DL3021A | 2 Ω~15 kΩ<br>(0.0000667 S~0.5 S ) |                           |                                     |
| DL3031  | 0.08 Ω~15 Ω<br>(0.0667 S~12.5 S)  | 2 m4///conco              | Vin/Dept*(0,20/)+0,20/ IEC          |
| DL3031A | 2 Ω~15 kΩ<br>(0.0000667 S~0.5 S ) | 2 mA/Vsense               | Vin/Rset*(0.2%)+0.2%IFS             |

| Range           | Resolution                                                                                         |                                                                                                                      |                                                                                                                          |
|-----------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 0 200 W         | 100 mW                                                                                             |                                                                                                                      |                                                                                                                          |
| 0 ∼ 200 W       |                                                                                                    |                                                                                                                      |                                                                                                                          |
| 0 ~ 2E0 W       | 100 mW/                                                                                            |                                                                                                                      |                                                                                                                          |
| 0 ~ 350 W       |                                                                                                    |                                                                                                                      |                                                                                                                          |
|                 |                                                                                                    |                                                                                                                      |                                                                                                                          |
| Frequency Range | Frequency<br>Resolution                                                                            | Frequency<br>Accuracy                                                                                                | Duty Cycle Range                                                                                                         |
| 0.001 Hz~15 kHz |                                                                                                    |                                                                                                                      |                                                                                                                          |
| 0.001 Hz~30 kHz | 0.904                                                                                              | ±0 E0/                                                                                                               |                                                                                                                          |
| 0.001 Hz~15 kHz | 0.070                                                                                              | ±0.5%                                                                                                                | 5%~95%, 1%                                                                                                               |
| 0.001 Hz~30 kHz |                                                                                                    |                                                                                                                      |                                                                                                                          |
|                 | ) ~ 200 W<br>) ~ 350 W<br>Frequency Range<br>).001 Hz~15 kHz<br>).001 Hz~30 kHz<br>).001 Hz~15 kHz | ) ~ 200 W 100 mW   ) ~ 350 W 100 mW   ) ~ 350 W 100 mW   Frequency Range Frequency Resolution   0.001 Hz~15 kHz 0.8% | 0 ~ 200 W 100 mW   0 ~ 350 W 100 mW   Frequency Range Frequency Resolution   0.001 Hz~15 kHz 0.8%   0.001 Hz~15 kHz 0.8% |

| Current Slew Rate <sup>[5]</sup> |                                                                   |            |              |
|----------------------------------|-------------------------------------------------------------------|------------|--------------|
| Model                            | Range                                                             | Resolution | Accuracy     |
| DL3021                           | 0.001 A/µs~0.25 A/µs<br>0.001 A/µs~2.5 A/µs (>5 V) <sup>[6]</sup> | 0.001 A/us | F0/ + 10 + c |
| DL3021A                          | 0.001 A/µs~0.3 A/µs<br>0.001 A/µs~3 A/µs (>5 V)                   | 0.001 A/µs | 5%+10 μs     |
| DL3031                           | 0.001 A/µs~0.25 A/µs<br>0.001 A/µs~2.5 A/µs (>5 V)                | 0.001 A/us | F0( + 10 + c |
| DL3031A                          | 0.001 A/µs~0.5 A/µs<br>0.001 A/µs~5 A/µs (>5 V)                   | 0.001 A/µs | 5%+10 μs     |

| Current Readback |          |            |                  |                         |
|------------------|----------|------------|------------------|-------------------------|
| Model            | Range    | Resolution | Accuracy         | Temperature Coefficient |
| DL3021           | 0 ~ 40 A | 1 mA       | ±(0.05%+0.05%FS) | <b>50 ppm/</b> ℃        |
| DL3021A          |          | 0.1 mA     |                  |                         |
| DL3031           | 0 (0 )   | 1 mA       | ±(0.05%+0.05%FS) | <b>50 ppm/</b> ℃        |
| DL3031A          | 0 ~ 60 A | 0.1 mA     |                  |                         |

| Voltage Readback |                |            |                             |                         |
|------------------|----------------|------------|-----------------------------|-------------------------|
| Model            | Range          | Resolution | Accuracy                    | Temperature Coefficient |
| DL3021           | 0 ~ 150 V      | 0.1 mV     | $\pm (0.050(\pm 0.020/55))$ | 20 ppm/°C               |
| DL3021A          | $0 \sim 150 V$ | 0.1 1110   | ±(0.05%+0.02%FS)            | <b>20 ppm/°</b> C       |
| DL3031           | 0 ~ 150 V      | 0.1 mV     | ±(0.05%+0.02%FS)            | 20 nnm/°∩               |
| DL3031A          | 0 ~ 150 V      | 0.1 111    | ±(0.03%+0.02%F3)            | <b>20 ppm/</b> ℃        |

| Resistance Readback |                  |             |
|---------------------|------------------|-------------|
| Model               | Range            | Resolution  |
| DL3021              | 0.08 Ω~15 kΩ     |             |
| DL3021A             | (0.0667 S~0.5 S) | 2 mA/Vsense |
| DL3031              | 0.08 Ω~15 kΩ     | 2 mA/Vsense |
| DL3031A             | (0.0667 S~0.5 S) |             |

| Power Readback |             |            |
|----------------|-------------|------------|
| Model          | Range       | Resolution |
| DL3021         | 0 a. 200 W/ | 100 mW     |
| DL3021A        | 0 ~ 200 W   | 100 1110   |
| DL3031         | 0 ~ 350 W   | 100 mW     |
| DL3031A        | U ~ 300 W   |            |

#### **Protection Function**

Overcurrent protection (OCP), overvoltage protection (OVP), overpower protection (OPP), overtemperature protection (OTP), as well as local/remote reverse voltage (LRV/RRV) protection.

| Stability <sup>[7]</sup> |                                  |                          |
|--------------------------|----------------------------------|--------------------------|
| Model                    | Current                          | Voltage                  |
| DL3021                   | $\pm (0.010(\pm 10 \text{ mA}))$ | $\pm (0.010(\pm 10.00))$ |
| DL3021A                  | ±(0.01%±10 mA)                   | ±(0.01%±10 mV)           |
| DL3031                   | $\pm (0.010(\pm 10 \text{ mA}))$ | ±(0.01%±10 mV)           |
| DL3031A                  | ±(0.01%±10 mA)                   |                          |

| Input Resistance |  |
|------------------|--|
| 350 kΩ           |  |

| Mechanical |                                   |  |
|------------|-----------------------------------|--|
| Dimensions | 239 mm(W) x 157 mm(H) x 442 mm(D) |  |
| Weight     | Net weight: 7.58 kg               |  |

| Power                  |                                         |  |
|------------------------|-----------------------------------------|--|
| AC Input (50 Hz~60 Hz) | 115 Vac±10%, 230 Vac±10% (max: 250 Vac) |  |
| Maximum Input Power    | <30 VA                                  |  |

#### Interface

| USB Device Interface | 1            |
|----------------------|--------------|
| USB HOST             | 1            |
| LAN Interface        | 1 (optional) |
|                      | ł            |

| RS232       | 1                                          |
|-------------|--------------------------------------------|
| Digital I/O | 1 (optional)                               |
| GPIB        | 1 (optional, USB-GPIB interface converter) |

| Environment              |                                     |  |
|--------------------------|-------------------------------------|--|
| Cooling Method           | Fan Cooled                          |  |
| Operating<br>Temperature | 0°C~40°C                            |  |
| Storage Temperature      | -40℃~70℃                            |  |
| Humidity                 | 5% to 80% RH (without condensation) |  |
| Altitude                 | Below 2,000 m                       |  |

| Certification Information |                                                                                                                                                                                                                                                                                         |  |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| EMC                       | Complies with the requirements of the following directive and<br>standards:<br>EMC Directive 2014/30/EU<br>EN 61326-1<br>EN 61000-3-2<br>EN 61000-3-3<br>Under following condition:<br>The maximum length of all connecting cables and wires to the<br>DL3000 series are less than 3 m. |  |
| Safety                    | Complies with the requirements of the following directive and<br>standards:<br>Low Voltage Directive 2014/35/EU<br>EN 61010-1: 2010<br>IP Degree: IP20<br>Pollution Degree: PD 2<br>Over Voltage Category: OVC II<br>Operation Location: Indoor use only; not for wet condition         |  |

**Note**<sup>[1]</sup>: Data measured after 30-second current sinking at the programming value (applicable to the programming accuracy in CC mode and CV mode).

**Note**<sup>[2]</sup>: FS indicates the full scale.

**Note**<sup>[3]</sup>: The input voltage for the low range in CR mode should be smaller than 8 V.

**Note**<sup>[4]</sup>: The programming accuracy in CR mode is also determined by the input voltage accuracy.

Note<sup>[5]</sup>: Current slew rate: rising slew rate for 10%~90% of the current (0-maximum current).

- **Note**<sup>[6]</sup>: When the input voltage is greater than 5 V, the maximum current slew rate is 5 A/µs; when the input voltage is greater than 4 V, the maximum current slew rate is 2.5 A/µs; when the input voltage is greater than 2 V, the maximum current slew rate is 0.1 A/µs.
- **Note**<sup>[7]</sup>: Following a steady 30-minute current sinking, change in current/voltage sinking over 8 hours under constant load, line, and ambient temperature.