Benutzerhandbuch

RIGOL

Publikationsnummer QGA07114-1110 November 2012

DS1000E, DS1000D Serie Digital-Oszilloskope

DS1102E, DS1052E, DS1102D, DS1052D

© 2008 RIGOL Technologies, Inc. Alle Rechte vorbehalten

Urheberrecht

- 1. © 2008 RIGOL Technologies, Inc. Alle Rechte vorbehalten
- 2. RIGOL Produkte sind durch das Patentrecht in und außerhalb der Volksrepublik China geschützt
- 3. Informationen in dieser Veröffentlichung ersetzen alle früheren entsprechenden Materialien.
- 4. RIGOL Technologies, Inc. Behält sich das alleinige Recht vor, Teile oder die gesamten Spezifikationen und die Preispolitik zu ändern bzw. zu modifizieren.

RIGOL ist ein eingetragenes Warenzeichen der **RIGOL** Technologies, Inc.

Sicherheitsinformationen

Überprüfen Sie die folgenden Sicherheitshinweise sorgfältig um Personenschäden oder Schäden am Gerät und an damit verbundenen weiteren Geräten zu vermeiden. Zur Vermeidung von Gefahren, nutzen Sie bitte das Gerät nur so, wie in diesem Handbuch angegeben.

Das Gerät sollte nur von autorisiertem Personal gewartet werden,

um Feuer oder Verletzungen zu vermeiden.

Verwenden Sie ein ordnungsgemäßes Netzkabel. Verwenden Sie für dieses Gerät nur die für ihr Land zugelassene und genehmigte Netzleitung.

Anschließen und trennen von Zubehör. Verbinden oder trennen Sie Tastköpfe oder Messleitungen nicht, während diese mit einer Spannungsquelle verbunden sind.

Erden des Gerätes. Das Oszilloskop ist durch den Schutzleiter des Netzkabels geerdet. Um Stromschläge zu vermeiden muss der Schutzleiter des Gerätes ordnungsgemäß geerdet sein, bevor Sie Verbindungen zu Ein- oder Ausgängen des Gerätes herstellen.

Anschluss eines Tastkopfes. Die Erdungsklemmen des Tastkopfes sind auf dem gleichen Spannungspegel des Instruments geerdet. Schließen Sie die Erdungsklemme an keine Hochspannung an.

Beachten Sie alle Anschlussbemessungen. Zur Vermeidung von Feuer oder Stromschlag beachten Sie alle Bemerkungen und Markierungen am Instrument. Befolgen Sie die Bedienungsanleitung, bevor Sie weitere Anschlüsse an das Gerät anschließen.

Arbeiten Sie nicht ohne Abdeckung. Betreiben Sie das Gerät nicht mit entfernter Abdeckung.

Benutzen Sie passende Sicherungen. Benutzen Sie nur Sicherungen die dem Typ, Spannung und Strom entsprechen, wie angegeben für dieses Instrument.

Vermeiden Sie Berührungen von offenen Stromkreisen und spannungsführenden Teilen. Berühren Sie keine freiliegenden Anschlüsse und Komponenten wenn der Strom eingeschaltet ist.

Arbeiten sie NICHT bei Verdacht auf Funktionsfehler. Bei Verdacht auf

Schäden am Instrument lassen Sie dieses von qualifiziertem Servicepersonal prüfen.

Sorgen Sie für ausreichende Belüftung. Siehe Installationsanweisung für eine ausreichende Belüftung des Gerätes.

Vermeiden Sie nasse/ feuchte Umgebungen.

Nicht in einer explosionsfähigen Atmosphäre betreiben.

Sorgen Sie für eine saubere und trockene Umgebung.

Die elektromagnetische Verträglichkeit aller Modelle erfüllt die Grenzwerte A in der Standard-Norm EN 61326: 1997+A1+A2+A3, aber nicht die Grenzwerte von B.

Messkategorie

Die DS1000E und DS1000D Digital-Oszilloskope Serien sind geeignet für die Messkategorie I.

Definition Messkategorie

Messkategorie I ist für die Messung an Stromkreisen, die nicht direkt an das Stromnetz angeschlossen sind. Beispiele sind Messungen an Stromkreisen die nicht vom Netz abgeleitet und speziell geschützte (interne) abgeleitete Schaltungen. Im letzteren Fall sind transiente Spannungen variabel; aus diesem Grund muss die vorübergehende Belastbarkeit der Geräte dem Benutzer bekannt sein.

WARNUNG

IEC Messkategorie I. Die Eingangsklemmen können in Schaltkreisen der IEC Messkategorie I angeschlossen werden, bis zu einer Spannung von 300 VAC. Um die Gefahr eines elektrischen Schlages zu vermeiden, nicht die Eingänge an eine Spannung über 300 VAC anschließen. Transiente Überspannungen können auch auf Schaltungen die vom Netz getrennt werden überschlagen. Die D1000E und DS1000E Digital-Oszilloskop Serie wurde entwickelt um gelegentlich einer transienten Überspannung von 1000Vpk standzuhalten. Benutzen Sie dieses Gerät nicht zum Messen an Schaltungen wo diese transiente Überspannung dieses Niveau überschreiten könnte.

Sicherheitsbegriffe und Symbole

Begriffe in diesem Handbuch. Diese Begriffe können in diesem Handbuch vorkommen:

WARNUNG: Die Kennzeichnung WARNUNG beschreibt Gefahrenquellen die leibliche Schäden oder den Tod von Personen zur Folge haben können.

VORSICHT: Die Kennzeichnung VORSICHT beschreibt Gefahrenquellen die Schäden am Gerät hervorrufen können.

Begriffe auf dem Produkt. Diese Begriffe können auf dem Produkt erscheinen:

DANGER (dt. GEFAHR): Weist auf eine Verletzung oder Gefährdung hin, die sofort geschehen kann.

WARNING (dt. WARNUNG): Weist auf eine mögliche Verletzung oder Gefährdung hin, die sofort geschehen kann.

CAUTION (dt. VORSICHT): Weist auf eine mögliche Beschädigung des Instruments oder anderen Gegenständen hin.

Symbole auf dem Produkt: Diese Symbole können auf dem Produkt erscheinen:

Hochspannung Benutzerhandbuch beachten

Schutzleiteranschluss

Gerätemasse

Erdung

© 2008 RIGOL Technologies, Inc.

Allgemeine Informationen

Dieses Buch umfasst die folgenden vier Produkte der DS1000E, DS1000D Digital-Oszilloskop Serie: DS1102E, DS1052E DS1102D, DS1052D (mit Logikanalysator)

Die DS1000E, DS1000E Serie sind kostengünstige, leistungsstarke Oszilloskope. DS1000E Serie ist ausgestattet mit zwei Kanälen und einem externen Trigger Kanal. DS1000D Serie ist ausgestattet mit zwei Kanälen und einem Trigger Kanal sowie einem 16 kanaligen Logikanalysator.

Die Bedienoberfläche der Digital-Oszilloskope Serie DS1000E und DS1000D ist übersichtlich gegliedert und sehr intuitiv zu bedienen. Die Bedienung und Einstellung wird beschleunigt, wenn Sie die AUTO Taste benutzen. Diese wählt geeignete Einstellungen für die richtige Darstellung von Signalverläufen aus. Zudem erlauben eine maximale Echtzeitabtastung von 1GSa/s, synchronisierte Abtastung (Äquivalent-Time Sampling, ETS) von 25GSa/s, ein leistungsstarker Trigger und Analysefunktionen dem Benutzer Signalverläufe detaillierter und schneller zu erfassen oder anzuzeigen.

Wesentliche Merkmale:

- 2 Kanäle, 1GSa/s maximale Echtzeitabtastung und 25GSa/s synchronisierte Abtastung, Bandbreite für jeden Kanal: 100MHz (DS1102E, DS1102D)
 50MHz (DS1052E, DS1052D)
- Optional 16 Digitalkanäle (DS1000D Serie). Jeder Kanal kann einzeln oder in zwei Bit Gruppen ein- und ausgeschaltet werden
- 5.6 Inch TFT LCD Farbdisplay
- Viele Triggerbetriebsarten: Flanke, Impulsbreite, Video, Anstieg, Alternieren, Bitmuster und Dauer Trigger (Nur DS1000D Serie)
- Einzigartig, feinfühlig einstellbarer Trigger erfüllt unterschiedlichste Ansprüche
- Fähigkeit, 22 Arten von Kurvenparameter automatisch mit Cursor zu messen
- Einzigartige Erfassung und Wiedergabe von Kurvenverläufen
- Leicht verzögerte Scan-Funktion
- Integrierte FFT-Funktion

© 2008 RIGOL Technologies, Inc.

- 4 digitale Filter stehen zur Verfügung: LPF, HPF, BPF, BRF
- Pass/ Fail Testfunktion ermöglicht Ausgabe von Testwerten
- Math-Optionen ermöglichen das multiplizieren von Kurvenverläufen
- UltraScope PC Software
- Schnittstellen f
 ür: USB Ger
 äte, USB Host, RS-232 und U-Disk-Storage sowie PictBridge Druckerstandard
- Die neue Funktion "Special Mode" erfüllt die Ansprüche der industriellen Produktion
- Unterstützung zur "Remote Command Control"
- Vorhandene Hilfefunktion ermöglicht eine geeignete Auskunft
- Mehrsprachige Benutzeroberfläche, unterstützt chinesische und englische Eingaben
- Unterstützung von "U-Disk" und USB Speichermedien
- Bandbreitenintensität kann eingestellt werden
- Automatische Darstellung eines Signalverlaufes mit AUTO
- Pop-up Menü macht das Lesen und Benutzen einfacher

Inhaltsverzeichnis

UrheberrechtI
SicherheitsinformationenII
Allgemeine InformationenV
Kapitel 1 Schnellstartanleitung1-1
Notwendige Inspektion1-2Abdeckungen und Benutzeroberfläche1-3Aussehen und Abmessungen1-8Funktionsprüfung durchführen1-9Tastkopfabgleich1-12Logiktastköpfe (nur DS1000D Serie)1-13Automatische Signaldarstellung1-15Bedienelemente für Vertikaleinstellungen1-16Bedienelemente für Horizontaleinstellungen1-18Bedienelemente für Triggereinstellungen1-20
Kapitel 2 Benutzen Ihres Oszilloskopes
Einstellen des Vertikalsystems2-2Einstellen des Horizontalsystems2-32Einstellen des Triggers2-39Einstellen/ Auswählen des Erfassungsmodus2-62Einstellen des Anzeigesystems2-67Speichern und Wiederaufrufen2-69Einstellen des Utility Systems2-77Automatische Messungen2-99Messungen mit Cursor2-106Benutzen der Erfassungskontrolle2-115
Kapitel 3 Anwendung & Beispiele
Beispiel 1: Einfache Messungen 3-1 Beispiel 2: Anzeigen einer Signalverzögerung, hervorgerufen durch eine Schaltung 3-2 Beispiel 3: Erfassen einer Einzelsignalauslösung 3-3 Beispiel 4: Reduzierung von weißem Rauschen bei Signalen 3-4 Beispiel 5: Cursormessung 3-6 Beispiel 6: Anwendung der X-Y Operation 3-8 Beispiel 7: Triggerung auf ein Videosignal 3-11
© 2008 RIGOL Technologies, Inc. VII
Benutzerhandbuch für DS1000E, DS1000D Serie

RIGOL			
Beispiel	Beispiel 8: FFT Cursormessung 3-1		
Beispiel	3-14		
Beispiel	10: Triggerung auf ein Digitalsignal	3-15	
Kapitel 4	Fehlerbehebung	4-1	
Kapitel 5	Technische Daten	5-1	
Technis	che Daten		
Verschie	edenes	5-6	
Kapitel 6	Anhang	6-1	
Anhang	A: Zubehör	6-1	
Anhang B: Gewährleistung6-2			
Anhang C: Pflege und Reinigung6-3			
Anhang	D: Kontakt RIGOL	6-4	
Stichwortv	erezichnis	1	

Kapitel 1 Schnellstartanleitung

Dieses Kapitel behandelt folgende Themen:

- Notwendige Inspektion
- Abdeckungen und Benutzeroberfläche
- Aussehen und Abmessungen
- Funktionsprüfung durchführen
- Tastkopfabgleich
 - Logiktastköpfe (nur DS1000D Serie)
- Automatische Signaldarstellung
- Bedienelemente für Vertikaleinstellungen
- Bedienelemente für Horizontaleinstellungen
- Bedienelemente für

Notwendige Inspektion

Haben Sie ihr neues Oszilloskop der Serie DS1000E, DS1000D erhalten, überprüfen Sie bitte das Gerät nach den folgenden Punkten:

1. Überprüfen Sie den Versandkarton auf Beschädigungen.

Bewahren Sie den (beschädigten) Versandkarton oder Polstermaterial auf, bis der Inhalt der Sendung auf Vollständigkeit und das Gerät mechanisch und elektronisch geprüft wurde.

2. Überprüfen Sie das Gerät.

Im Fall eines mechanischen Schadens oder Mangels teilen Sie diese bitte Ihrem Rigol Handelsvertreter mit.

Sollte der Versandkarton beschädigt sein, oder das Polstermaterial Anzeichen von Beschädigung aufweisen, teilen Sie dieses bitte dem Transportunternehmen sowie dem **Rigol** Vertriebsbüro mit. Halten Sie das Verpackungsmaterial für eine Inspektion bereit. **RIGOL** wird nach Einschätzung eine Reparatur oder ein Ersatzgerät arrangieren und nicht auf eine Forderung zur Schadensabwicklung warten.

3. Überprüfen Sie das mitgelieferte Zubehör.

Zubehör das mit dem Gerät mitgeliefert wird ist aufgeführt unter: "Anhang A: Zubehör" in diesem Handbuch.

Sollte der Inhalt nicht vollständig oder beschädigt sein, kontaktieren Sie bitte ihren **RIGOL** Handelsvertreter.

Abdeckungen und Benutzeroberfläche

Als aller Erstes sollten Sie die Bedienoberfläche ihres Oszilloskops kennenlernen. Dieses Kapitel soll ihnen helfen vertraut mit dem Aufbau der Knöpfe und Tasten zu werden und wie Sie diese benutzen können. Lesen Sie dieses Kapitel sorgfältig, bevor Sie weitere Schritte unternehmen.

1. Frontabdeckung

Abbildung 1- 1, Frontabdeckung; Die Knöpfe werden häufig verwendet und sind gleich wie an anderen Oszilloskopen. Die Bedienelemente erlauben Ihnen Funktionen direkt aufzurufen, Menüs einzublenden welche Messfunktionen mit Zusatzfunktionen bereitstellen oder auf Kontrollfunktionen verweisen und diese ausführen.

• Frontabdeckung DS1000E Oszilloskop:

• Frontabdeckung DS1000D Oszilloskop:

Abbildung 1-1

Ansicht Frontabeckung der Oszilloskop Serie DS1000E, DS1000D

Abbildung 1- 2 Frontabdeckung Anweisungen

2. Rückseite

Abbildung 1- 3 Ansicht der Rückseite der Oszilloskop Serie DS1000E, DS1000D

Abbildung 1- 4 Rückseite Anweisungen

Die Rückseite der DS1000E, DS1000D Serie enthalten folgende Anschlüsse:

- ① **Pass/ Fail Anschluss:** Die Pass/ Fail Testergebnisse können durch diesen Anschluss ausgegeben werden.
- ② RS232 Anschluss: Das Oszilloskop kann an externe Ausrüstung über die serielle Schnittstelle verbunden werden.
- ③ **USB Geräte Anschluss:** Wird benutzt um Daten auf externen USB-Geräten zu speichern, welche als "Device Equipment" erkannt werden. Beispiel: Anschluss von PictBridge-Druckern den über USB-Anschluss.

Bezeichnungen in diesem Handbuch:

Im ganzen Handbuch sind Bezeichnungen von Knöpfen und Tasten gleich wie die auf der Frontabdeckung.

- Eine Umrandung eines Tastnamens zeigt eine Menü-Funktionstaste auf der Frontabdeckung an, wie Measure.
- (\checkmark) Deutet den Multifunktionsdrehknopf O an.
- **OPOSITION** deutet die zwei "POSITION" Knöpfe an.
- **OSCALE** deutet die zwei "SCALE" Drehknöpfe an.
- <u>©LEVEL</u> deutet den "LEVEL" Drehknopf an.
- Der grau hinterlegte Name zeigt eine Menüschaltfläche an, wie Signalverlauf im Speicher Menü.

3. Benutzeroberfläche

Aussehen und Abmessungen

Abbildung 1-7 Vorderansicht

© 2008 RIGOL Technologies, Inc. Benutzerhandbuch für DS1000E, DS1000D Serie

Funktionsprüfung durchführen

Benutzen Sie diese kurze Funktionsprüfung um festzustellen ob Ihr Gerät einwandfrei funktioniert.

1. Inbetriebnahme.

- Benutzen Sie nur die Netzleitung die für dieses Oszilloskop vorgesehen ist.
- Benutzen Sie eine Spannungsquelle die eine Spannung von 100 bis 240 VAC_{RMS} mit eine Frequenz von 45Hz bis 440Hz bereit-stellt.
- Schalten Sie das Gerät an und warten Sie bis das Anzeigefenster der Kurvenverläufe am Display erscheint.
- Drücken Sie die <u>Storage</u> Taste, wählen Sie Speicherung im Menü oben aus und drücken Sie dann den Menüpunkt Hersteller.

WARNUNG:

Um die Gefahr eines elektrischen Schlages zu verhindern, vergewissern Sie sich dass das Oszilloskop richtig geerdet ist.

2. Rechteckspannung mit dem Oszilloskop erfassen

DS1000E Serie: 2 Eingabekanäle + 1 externer Trigger Kanal DS1000D Serie: 2 Eingabekanäle + 1 externer Trigger Kanal + 16 Digitaleingabekanäle

© 2008 RIGOL Technologies, Inc. Benutzerhandbuch für DS1000E, DS1000D Serie

Führen Sie folgende Schritte aus:

- ① Stellen Sie den Schalter am Tastkopf auf 10X und verbinden Sie diesen dann mit dem ersten Kanal am Oszilloskop:
- Verbinden Sie die Leitung des Tastkopfes mit der BNC Buchse an der Frontplatte mit der Bezeichnung CH1.
- Durch drücken und drehen des BNC Steckers im Uhrzeigersinn, wird die Messleitung am Oszilloskop angeschlossen.
- Verbinden Sie die Tastkopfspitze mit der Rechteckspannung und die Masseklemme mit dem Masseanschluss am Oszilloskop.

Abbildung 1- 10 Verbinden eines Tastkopfes

② Einstellen der Tastkopfdämpfung auf 10X. Gehen Sie wie folgt vor, drücken Sie CH1→Messkopf→10X.

Abbildung 1- 11 Dämpfung am Tastkopf festlegen Abbildung 1- 12 Dämpfung im Menü festlegen

- ③ Drücken Sie auf die AUTO Taste. In ein paar Sekunden wird eine Rechteckspannung am Display angezeigt.
- ④ Drücken Sie die CH1 Taste wiederholt, wird Kanal 1 ausgeschalten.
- ⑤ Drücken Sie die CH2 Taste um Kanal 2 einzuschalten, wiederholen Sie Schritt 2 und 3.

Hinweis: Die Rechteckspannung für die Kompensierung von Tastköpfen sollte nur für die Kompensierung nicht für die Kalibrierung benutzt werden.

Tastkopfabgleich

Führen Sie diesen Abgleich durch um die Leistungsmerkmale vom Tastkopf und dem Eingangskanal zu erfüllen. Dieser Tastkopfabgleich sollte immer dann ausgeführt werden, wenn ein Tastkopf zum ersten Mal an einen Kanal angeschlossen wird.

 Wählen Sie im CH1 Menü die Tastkopfdämpfung 10X (drücken Sie CH1→Messkopf→10X). Stellen Sie den Schalter auf 10X am Tastkopf und verbinden Sie ihn mit Kanal 1 am Oszilloskop. Sollten Sie den Klemmhacken benutzen, stellen Sie sicher, dass die Verbindung zwischen Tastkopfspitze und Klemmhacken korrekt ist.

Verbinden Sie die Tastkopfspitze mit der Rechteckspannung und die Masseklemme mit dem Masseanschluss am Oszilloskop, wählen Sie CH1 aus und drücken Sie dann AUTO.

2. Überprüfen Sie die Form des dargestellten Rechtecksignals. überkompensiert richtig unterkompensiert

Abbildung 1- 13 Tastkopfkompensation

- 3. Falls erforderlich, benutzen Sie einen nicht-metallischen Schraubendreher um den Trimmkondensator einzustellen. Versuchen Sie mit der Einstellung am Kondensator eine möglichst flache Rechteckspannung zu erzielen.
- 4. Falls erforderlich, wiederholen Sie diesen Ablauf.

WARNUNG: Um die Gefahr eines elektrischen Schlages zu verhindern während Sie die Tastköpfe benutzen, stellen Sie sicher dass das Isolationsmaterial der Leitung nicht beschädigt ist und berühren Sie keine metallischen Bauteile des Tastkopfes wenn dieser mit einer Spannungsquelle verbunden ist.

Logiktastköpfe (nur DS1000D Serie)

Digitaltastköpfe werden nur für die DS1000D Serie bereitgestellt, welche einen Logikanalysator haben.

- 1. Schalten Sie das Oszilloskop aus, falls erforderlich, um einen Kurzschlusse zu vermeiden. Sollte keine Spannung an den Digitaltastköpfen anliegen kann das Oszilloskop angeschaltet bleiben.
- Schließen Sie den Stecker der Flachleitung FC1868 am Logikanalysatoreingang an. Verbinden Sie die andere Seite mit dem "Logic Head" LH1116. Eine Kennzeichnung ist an jedem Ende der Flachleitung angebracht, damit diese nicht falsch angeschlossen werden kann. Es ist unnötig das Oszilloskop auszuschalten, wenn die Leitungen angeschlossen werden.

Abbildung 1- 14 Verbinden des "Logic Head"

ACHTUNG: Benutzen Sie nur FC1868, LH1116, TC1100 und LC1150 hergestellt von **RIGOL**, speziell für die DS1000D Serie.

3. Verbinden Sie einen Tastkopf mit einer Anschlussleitung. Stellen Sie sicher, dass der Tastkopf korrekt verbunden ist.

Abbildung 1- 15 Eingangsschnittstelle für Digitalkanäle

4. Prüfen Sie ihre Schaltungen.

Abbildung 1- 16 Digitalkanalmessung

5. Vergessen Sie nicht die Masseverbindung mit dem Messobjekt.

Abbildung 1- 17 Masseverbindung herstellen

Automatische Signaldarstellung

Ihr Oszilloskop hat eine automatisierte Funktion um Eingangssignale am besten darzustellen. Das Eingangssignal sollte eine Frequenz von 50Hz oder größer haben und einen Tastgrad von mehr als 1%.

Benutzen dieser Einstellung:

- 1. Legen Sie ein Signal am Eingang an, wie oben beschrieben.
- 2. Drücken Sie AUTO.

Das Oszilloskop wird automatisch die Vertikal-, Horizontal- und Trigger Einstellungen vornehmen um eine bestmögliche Darstellung des Signalverlaufes zu erreichen. Falls nötig, kann eine manuelle Korrektur erfolgen.

Bedienelemente für Vertikaleinstellungen

Abbildung 1- 18 zeigt die Vertikalbedienelemente, CH1, CH2, MATH, REF und OFF-Tasten sowie die Vertikal OPOSITION, OSCALE-Knöpfe. Folgen Sie den Übungen mit Tasten, Knöpfen und Statusleiste um sich mit den Vertikaleinstellungen vertraut zu machen.

Abbildung 1- 18 Bedienelemente für Vertikaleinstellungen

1. Vertikale Verschiebung eines Signals auf dem Display mit dem (Display mit dem Display Drehknopf.

Sobald Sie den <u>POSITION</u> Drehknopf drehen, wird in der Bildschirmmitte ein Spannungswert, gemessen gegen Masse, eine kurze Zeit eingeblendet. Beachten Sie auch, dass sich das Massesymbol auf der linken Bildschirmseite in Verbindung mit dem <u>POSITION</u> Drehknopf bewegt.

	Messhinweis			
1-16		© 2008 RIGOL Technologies, Inc.		
	Benutzerhandbuch für DS1000E, DS1000D Serie			

Sollte ein Kanal DC gekoppelt sein, messen Sie eine Gleichspannungskomponente eines Signales einfach durch ablesen des Abstand des Massesymbols.

Sollte ein Kanal AC gekoppelt sein, wird die Gleichspannungskomponente des Signals unterdrückt, die Wechselspannungskomponente des Signals kann mit einer höheren Auflösung angezeigt werden.

Tastenkürzel für die Rückstellung der Vertikaleinstellung

Drehen Sie am <u>POSITION</u> Drehknopf um die Vertikalposition zu ändern und drücken Sie dann den <u>POSITION</u> Drehknopf um die Vertikalposition auf 0 zu stellen. Dieses Tastenkürzel ist insbesondere hilfreich, sollte die Strahlposition weit außerhalb des Anzeigebereichs sein und Sie wollen sofort zur Bildschirmmitte zurückkehren.

2. Ändern der Vertikaleinstellungen, jede Änderung beeinflusst die Statusleiste unterschiedlich.

- Betrachten Sie die Statusleiste am unteren Bildschirmrand, um die Vertikalskala zu verstehen.
- Verändern Sie die Vertikalskalierung durch Drehen des OSCALE Drehknopfes und beobachten Sie die Veränderung der Statusleiste.
- Drücken Sie CH1, CH2, MATH, REF, LA (nur DS1000D Serie) um das Menü, die Bezeichnung und das Signal des entsprechenden Kanals anzuzeigen. Drücken Sie die OFF Taste um den Kanal auszuschalten.

Grob/ Fein Tastenkürzel

Die grob/ fein Vertikaleinstellung kann einfach durch drücken des vertikal

Bedienelemente für Horizontaleinstellungen

Abbildung 1-19 zeigt die Horizontalbedienelemente, MENU Taste, OPOSITION und OSCALE Knöpfe. Folgen Sie den Übungen mit Tasten, Knöpfen und Statusleiste um sich vertraut mit der Horizontaleinstellung zu machen.

Abbildung 1- 19 Bedienelemente für Horizontaleinstellungen

1. Drehen Sie am ^{OSCALE} Drehknopf und beobachten Sie die Änderung in der Statusleiste.

Der horizontal ^(©)SCALE Drehknopf ändert die Ablenkgeschwindigkeit in 1-2-5 Schritten, und zeigt den Wert in der Statusleiste an. Die Zeitbasis der Oszilloskope ist von 2ns/div* bis 50s/div.

Tastenkürzel für verzögerten Abtastmodus

Drücken Sie den SCALE Drehknopf im Horizontaleinstellbereich an der Frontplatte um den Modus für die verzögerte Abtastung zu starten oder zu beenden. Dieses Tastenkürzel ersetzt die Menüoption $\boxed{MENU} \rightarrow Verzögert \rightarrow An$.

* **Hinweis:** Die Horizontalabtastung variiert zwischen den verschiedenen Oszilloskop Modellen.

© 2008 RIGOL Technologies, Inc. Benutzerhandbuch für DS1000E, DS1000D Serie

2. Der horizontal OPOSITION Drehknopf bewegt ein eingeblendetes Signal horizontal im Anzeigefenster

Drehen Sie am horizontal ^{©POSITION} Drehknopf um die Trigger Verzögerung einzustellen. Der Kurvenverlauf wird gleichzeitig horizontal verschoben.

Tastenkürzel für die Rückstellung der Horizontaleinstellung

Drücken Sie den ^{(©POSITION} Drehknopf um die Horizontalposition auf 0 zu setzen. Dies ist insbesondere hilfreich, sollte der Trigger punkt weit außerhalb des Anzeigebereichs sein und Sie wollen sofort zur Bildschirmmitte zurückkehren.

3. Drücken Sie die MENU Taste um das Zeitbasismenü anzuzeigen.

Um den verzögerten Abtastmodus zu starten oder zu beenden, um das Display auf Y-T, X-Y oder Bilddurchlaufmodus zu stellen, oder die Trigger Verzögerung zurückzusetzen.

Die horizontale Positionseinstellung

Trig-Offset: Die relative Position des Trigger Punktes zur Position des Bildschirmmittelpunktes ändern. Drehen Sie den <u>OPOSITION</u> Drehknopf um den Trigger punkt horizontal zu verschieben.

Bedienelemente für Trigger Einstellungen

Abbildung 1-20 zeigt die Trigger Einstellungen: MENU, 50%, FORCE und einen ()LEVEL Trigger Level Drehknopf. Folgen Sie den Übungen um sich vertäut mit den Tasten, Trigger Level Drehknopf und der Statusleiste zu machen.

Abbildung 1-20 Bedienelemente für Trigger Einstellungen

1. Drehen Sie am Trigger Level Drehknopf und beobachten Sie die Änderung im Display.

Wenn Sie den <u>OLEVEL</u> Drehknopf betätigen oder die <u>50%</u> Taste drücken, werden für kurze Zeit zwei Dinge am Display angezeigt.

- Der Wert des Trigger Levels wird in der linken unteren Ecke des Bildschirms angezeigt.
- Eine Linie wird mit der Lage des Trigger Levels angezeigt (solange nicht die AC Kopplung oder Niedrigfrequenzsperre eingeschalten ist).

Tastenkürzel für die Rückstellung des Trigger Levels

Drehen Sie den <u>©LEVEL</u> Drehknopf um das Trigger Level zu ändern und drücken Sie dann den <u>©LEVEL</u> Drehknopf um den Trigger Level auf 0 zurückzusetzen.

2. Ändern Sie die Trigger Einstellung, und beobachten Sie die Änderung in der Statusleiste.

Drücken Sie die MENU Taste in der Trigger Einstellung. Es wird ein Menü auf dem Bildschirm eingeblendet welches die Trigger Einstellmöglichkeiten zeigt, wie in Abbildung 1-21 dargestellt.

Abbildung 1- 21

Modus.

Zeitablenkund

Set Up

- Drücken Sie die Modus Taste und wählen Sie Flanke.
- Drücken Sie die Trigger Quelle Taste und wählen Sie CH1.
- Drücken Sie die Anstieg Taste und wählen Sie
- Drücken Sie die Zeitablenkung Taste und wählen Sie Automatisch.
- Drücken Sie die Set Up Taste um in das zweite Menü zu gelangen.

Hinweis: Die Triggerbetriebsarten, Anstieg und Quelle ändern sich in Verbindung mit der Statusleiste in der oberen rechten Ecke im Bildschirm.

3. Drücken Sie 50%

Die 50% Taste setzt der Trigger Level in die Mitte des Signals.

4. Drücken Sie FORCE

Eine Erfassung, unabhängig eines ausreichenden Trigger Signals, wird in der Regel im "Normal" oder "Einmalig" Trigger Modus gestartet. Diese Taste hat keinen Einfluss wenn die Erfassung gestoppt wurde.

Sperrzeit: Zeit bevor das Oszilloskop auf das nächste Trigger Signal reagiert. Während der Sperrzeit wird das Trigger System gesperrt. Diese Funktion hilft bei der Darstellung komplexen Signalen, z.B. AM Signalen von (Amplitudenmodulation). Drücken Sie die Sperrzeittaste den um Multifunktionsdrehknopf (\mathbf{v}) zu aktivieren, dann kann mit diesem die Sperrzeit eingestellt werden.

Kapitel 2 Benutzen Ihres Oszilloskops

Nun sollten Sie die Vertikal-, Horizontal- und Trigger Einstellungen verstehen und wie Sie die Systemeinstellungen der Oszilloskop Serie DS1000E, DS1000E über die Statusleiste einstellen.

Dieses Kapitel wird alle Tasten auf der Frontabdeckung, Drehknöpfe und Menüs behandeln; Ihr Wissen über die Bedienung wird mit Tipps in diesem Handbuch erweitert. Es wird empfohlen alle Übungen auszuführen um alle leistungsfähigen Messfähigkeiten des Oszilloskops ausschöpfen zu können.

Dieses Kapitel befasst sich mit folgenden Themen:

- Einstellen des Vertikalsystems
 (CH1, CH2, MATH, REF, LA (f
 ür DS1000D Serie) OFF, Vertikal OPOSITION, Vertikal OSCALE)
- Einstellen des Horizontalsystems
 (MENU, Horizontal OPOSITION, Horizontal OSCALE)
- Einstellen des Triggers (OLEVEL, MENU, 50%, FORCE)
- Einstellen/ Auswählen des Erfassungsmodus (Acquire)
- Einstellen des Anzeigesystems (Display)
- Speichern und Wiederaufrufen (Storage)
- Einstellen des Utility Systems (Utility)
- Automatische Messungen (Measure)
- Messungen mit Cursor (Cursor)
- Benutzen der Erfassungskontrolle (AUTO, RUN/STOP)

Bitte lesen Sie dieses Kapitel sorgfältig um mehr Informationen zu den Messungen und der Bedienung der DS1000E und DS1000D Serie zu erhalten.

© 2008 RIGOL Technologies, Inc.

Einstellen des Vertikalsystems

Einstellungen der Kanäle

Diese Oszilloskop Serie bietet 2 Kanäle an. Jeder Kanal hat ein Bedienmenü welches nach dem drücken der CH1 oder CH2 Taste erscheint. Die Einstellungen der Menüpunkte sind in der Tabelle unten angegeben.

CH1			
Kopplung	Menű	Einstellungen	Bemerkungen
DC	Kopplung	AC	Blockiert die Gleichspannungs-
BB 20M			Komponenten eines
Aus		DC	Eingangssignals.
Messkopf			Lässt Gleich- und
< 1X			Wechselstromkomponenten
		Erde	des Eingangssignals durch.
Digitalfilter			Trennt das Eingangssignal.
1/2	BB 20M	An	Limitiert die Kanalbandbreite
-			auf 20MHz, um
			Displayrauschen zu reduzieren.
		Aus	Volle Kanalbandbreite.
	Messkopf	1X	
		5X	Stellen Sie hier den
		10X	Dämpfungsfaktor ihres
		50X	Tastkopfes ein, es wird eine
		100X	richtige Vertikalskalierung der
		500X	Anzeige erreicht.
		1000X	
	Digital filter		Digitale Filter einstellen (Siehe
			Abbildung 2-4)
	-	1/2	Gehen Sie zur nächsten
			Menuseite (Die Anweisungen sind die Gleichen keine
			weitere Erklärung)

Abbildung 2-1 Tabelle 2-1 Das Kanalmenü (Seite 1/2)

© 2008 RIGOL Technologies, Inc.

CH1	Menü	Einstellun gen	Bemerkungen
2/2 Volts/Div Grob	-	2/2	Gehen Sie zur vorherigen Menüseite zurück (Die Anweisungen sind die Gleichen, keine weitere Erklärung)
Invertiert Aus	Volts/Div	Grob	Wählt die Auflösung des <u>SCALE</u> Drehknopfes Legt eine 1-2-5 Schrittfolge fest.
		Fein	Die Auflösung in kleinere Zwischenschritte einteilen.
		An	Die Invertier Funktion einschalten.
	Invertiert	Aus	Wiederherstellen des original Signalverlaufes.

Abbildung 2-2 Tabelle 2-2 Das Kanalmenü (Seite 2/2)

1. Kanalkopplung

Als Beispiel wird am Kanal 1 eine Sinusspannung mit DC Anteil angelegt.

Drücken Sie $CH1 \rightarrow Kopplung \rightarrow AC$ um die "AC" Kopplung einzuschalten. Wechselspannungskomponenten des Eingangssignals werden angezeigt, wohingegen Gleichspannungsanteile ausgeblendet werden. Der Signalverlauf wird angezeigt wie in Abbildung 2- 3:

Abbildung 2-3

AC Kopplungseinstellung

Drücken Sie $CH1 \rightarrow Kopplung \rightarrow DC$, um die "DC" Kopplung einzuschalten. Diese Einstellung lässt sowohl Wechsel- und Gleichspannungskomponenten des Eingangssignals durch. Der Signalverlauf wird wie in Abbildung 2- 4 angezeigt:

Abbildung 2- 4 DC Kopplungseinstellungen

Drücken Sie $CH1 \rightarrow Kopplung \rightarrow Erde$, um die "Erde" Kopplung einzustellen, dies trennt das Eingangssignal.

© 2008 RIGOL Technologies, Inc.

2-4
```
RIGOL
```


Erde Kopplungseinstellung

2. Einstellen der Bandbreitenbegrenzung

Als Beispiel wird am Kanal 1 ein Signal mit einem Hochfrequenzanteil angelegt. Drücken Sie $CH1 \rightarrow BB \ 20M \rightarrow Aus$ um die Bandbreitenbegrenzung auszuschalten. Das Oszilloskop ist auf volle Bandbreite eingestellt und zeigt den Hochfrequenzanteil des Signals an. Der Signalverlauf wird wie in Abbildung 2- 6 dargestellt:

Ausschalten der Bandbreitenbegrenzung

Drücken Sie $CH1 \rightarrow BB 20M \rightarrow ON$, um die Bandbreitenbegrenzung ein zu schalten. Das Oszilloskop wird alle Frequenzbestandteile größer als 20MHz ausblenden.

© 2008 RIGOL Technologies, Inc.

Benutzerhandbuch für DS1000E, DS1000D Serie

2-6

3. Einstellung für Tastkopfdämpfung

Ihr Oszilloskop erlaubt Ihnen die Tastkopfdämpfung einzustellen. Der Dämpfungsfaktor verändert die Vertikalskalierung des Oszilloskops, so dass die Messergebnisse den Spannungspegel an der Tastkopfspitze wieder spiegeln.

Um die Tastkopfdämpfung zu ändern (oder zu prüfen), kann die Einstellung mit dem Drücke der CH1 oder CH2 Taste aufgerufen werden (Je nachdem welcher Kanal benutzt wird). Drücken Sie die Messkopf Taste um die Tastkopfdämpfung dem Tastkopf anzupassen. Diese Einstellung wird solange beibehalten, bis diese wieder geändert wird.

Abbildung 2-8 zeigt ein Beispiel für die Benutzung einer Tastkopfdämpfung von 1000:1.

© 2008 RIGOL Technologies, Inc.

Benutzerhandbuch für DS1000E, DS1000D Serie

Faktoren für Tastkopfdämpfung	Entsprechende Einstellung
1:1	1X
5:1	5X
10:1	10X
50:1	50X
100:1	100X
500:1	500X
1000:1	1000X

Tabelle 2-3	Die Tastkopfeinstellungen
	Die lusikoprenistenungen

4. Digitale Filtereinstellungen

Die DS1000E, DS1000D Serie bietet 4 digitale Filter (Tiefpassfilter, Hochpassfilter, Bandpassfilter und Bandsperrfilter) an. Um eine gute Filterwirkung zu erzielen können bestimmte Signalfrequenzen ausgefiltert werden, indem Sie den Bereich der Filterfrequenz einstellen. Drücken Sie $CH1 \rightarrow Digitalfilter$, um das Filtermenü anzuzeigen. Drehen Sie am Multifunktionsdrehknopf (\checkmark) um die obere und untere Frequenzgrenze einzustellen.

Abbildung 2- 9 Signalverlauf bei ausgeschalteten digitalen Filtern

© 2008 RIGOL Technologies, Inc.

Benutzerhandbuch für DS1000E, DS1000D Serie

Signalverlauf bei eingeschaltetem digitalem Filter

Abbildung 2-11 Tabelle 2-4 Das Filter Menü

Filter Digitalfilter	Menü	Einstellungen	Bemerkungen		
Aus		An	Einschalten des digitalen		
Filtertyp	Digitalfiltor	Aus	Filters		
└──→f	Digitainitei		Ausschalten des digitalen		
			Filters		
24.50MHz		t⊂f	Wähle LPF (Tiefpassfilter)		
Sintergrenze	Filtertyn	t₊f	Wähle HPF (Hochpassfilter)		
24.50MHz	тпсетсур	tf	Wähle BPF (Bandpassfilter)		
1		ħf	Wähle BRF (Bandsperre)		
		Ð	Drehen Sie am (🕹)		
	Obergrenze	<frequenz></frequenz>	Multifunktionsdrehknopf um		
	Obergrenze		oberen Grenzwert		
			einzustellen.		
		Ð	Drehen Sie am (🕹)		
	Untergrenze	<frequenz></frequenz>	Multifunktionsdrehknopf um		
	Untergrenze		den unteren Grenzwert		
			einzustellen.		
			Zurück zum übergeordnetem		
			Menupunkt (die folgenden sind die Gleichen)		

5. Volts/Div Einstellungen

Die **Volts/Div** Einstellung hat eine **grob** oder **fein** Konfiguration. Die vertikale Sensibilität ist von 2mV/div - 10V/div. **Grob:** Ist die vorgegebene Einstellung für Volts/Div in 1-2-5-Schritten in Reihe von 2mV/Div, 5mV/Div, 10mV/Div, 20mV/Div.....10V/Div. **Fein:** Diese Einstellung ändert die Vertikalskalierung in kleinen Schritten, die zwischen denen der Grobeinstellung liegen. Es ist hilfreich das Signal in kleinen Schritten einzustellen.

Grob/ Fein Tastenkürzel

Die grob/ fein Vertikaleinstellung kann nicht nur über das Menü erfolgen, sondern auch einfach durch drücken des vertikal ^{©SCALE} Drehknopfes.

6. Invertieren eines Signalverlaufs

Invertierung dreht den Signalverlauf um 180 Grad, bezüglich der Erdungsreferenz. Wenn das Oszilloskop auf ein invertiertes Signal getriggert wird, ist der Trigger auch invertiert. Abbildung 2- 13 und Abbildung 2- 14 zeigt die Veränderung nach der Invertierung.

Abbildung 2- 14 Signal nach der Invertierung

Mathematische Funktionen

Die mathematischen Funktionen beinhalten die Operationen "addieren", "subtrahieren", "multiplizieren" und "FFT" für Kanal 1 und Kanal 2. Das mathematische Ergebnis kann mit den Gitter- und Cursoreinstellung gemessen werden. Drücken Sie die MATH Taste, um das MATH Interface aufzurufen. Dies sieht wie folgt aus:

Abbildung 2-16	Tabelle 2- 5 Das Menü für mathematische Funktionen
----------------	--

Math	Menü	Einstellungen	Bemerkungen
Anwenden			Addieren von Quelle A und
		A+B	Quelle B
Quelle A		A-B	Subtrahieren von Quelle B von
CH1	Anwondon		Quelle A.
Quelle B	Anwenden	A×B	Multiplizieren von Quelle A mit
CH2			Quelle B.
		FFT	"Schnelle
Invertiert			Fourier-Transformation".
Aus		CH1	Definiere Kanal 1 oder Kanal 2
	Quelle A	CH2	als Quelle A.
		CH1	Definiere Kanal 1 oder Kanal 2
		CH2	als Quelle B.

		Invertieren	der
Invertion An	mathematischen Funktion.		
Invertiert	Aus	Wiederherstellen des origin	alen
		Signalverlaufs.	

1. Benutzen der "Schnellen Fourier-Transformation"

Die FFT (Schnelle Fourier Transform) konvertiert ein Zeitsignal mathematisch in seine Frequenzanteile. Die Horizontalachse stellt die Frequenz dar und die Vertikalachse die Amplitude dBVrms oder Vrms.

Die FFT Funktion ist nicht nur hilfreich um Rauschen und Verzerrungen in analogen Signalverläufen hervorgerufen durch nichtlineare Verstärker zu finden, sondern auch zum Einstellen des analogen Filters.

FFT-Signale sind hilfreich für die folgenden Anwendungen:

- zum Finden von harmonischen Inhalten und Verzerrungen in Systemen
- bei der Charakterisierung von Rauschen in DC- Stromquellen
- Analyse von Vibrationen

2-14

Drücken Sie MATH→Anwenden→FFT, um das FFT Menü anzuzeigen.

FFT Anwenden	Menü	Einstellun gen	Bemerkungen	
Quelle CH1 Fenster Rectangle		A+B A-B A x B FFT	Addieren von Quelle A und Quelle B Subtrahieren von Quelle B von Quelle A. Multiplizieren von Quelle A mit Quelle B. "Schnelle Fourier-Transformation".	
Anzeige Geteilt	Anzeige Geteilt Quelle		Definiere Kanal 1 oder Kanal 2 als FFT Quelle.	
Skala VRMS	Fenster	Rectangle Hanning Hamming Blackman	Wählt Fenster für FFT.	
	Anzeige	Geteilt Vollbild	Zeigt FFT Signal auf halben Bildschirm. Zeit FFT Funktion auf ganzen	
	© 2008 RIGOL Technologies, Inc.			

Abbildung 2- 17 Table 2- 6 Das FFT Menü

			Bildschirm.
Vrms	Vrms	Setzt "Vrms " als Vertikaleinheit	
SKale		dBVrms	Setzt "dBVrms " als Vertikaleinheit

Hinweis für FFT

Signale die Gleichspannungskomponenten oder Versatz enthalten können zu einem falschen FFT-Signal-Magnitutwert führen. Um Gleichstromkomponenten zu minimieren, wählen Sie für das Quellsignal AC Kopplung.

Um Rausch- und Aliasing-Anteile zu reduzieren, in Wiederhol- oder Einzelauslösungen, stellen Sie den Erfassungsmodus des Oszilloskops auf Mittelwert.

Um FFT Signale mit einer großen dynamischen Bandbreite anzuzeigen, benutzen Sie die dBVrms Skalierung. Um FTT-Kurven mit einem großen Dynamikbereich anzuzeigen, verwenden Sie die dBVrms Skala. Die dBVrms-Skala zeigt die Magnituden Anteile unter Verwendung einer Log Skala an.

2. Auswahl eines FFT Fensters

Ihr Oszilloskop stellt ihnen vier FFT Fenster zur Verfügung. Jedes Fenster geht einen Kompromiss zwischen Frequenzauflösung und Amplitudengenauigkeit ein. Sie sollten das Fenster danach auswählen, was Sie messen wollen und welche Merkmale Ihr Quellsignal aufweist. Benutzen Sie den folgenden Leitfaden um ein geeignetes Fenster auszuwählen.

Fenster	Eigenschaften Geeignet für die Messungen		
Rectangle	Beste Frequenzauflösung, schlechteste Magnituden Auflösung. Diese Einstellung ist vergleichbar mit dem Arbeiten ohne Fenster.	AmbestengeeignetfürTransientenoderSpitzen,dasSignalniveauistvorundnachdemEreignis fast gleich.sinuswellenmitgleicherSinuswellenmitgleicheramplitudeundfestgelegtenFrequenzen.BreitbandrauschenmitrelativlangsamvariierendemSpektrum.Spektrum.Spektrumspektrumspektrum	
Hanning	Bessere Frequenz-,	Sinus, periodisches und	

Table	2-	7	Das	FFT	Fenster
-------	----	---	-----	-----	---------

Hamming	schlechtere	Schmalband-Rauschen.		
	Magnituden	Am besten geeignet für		
	Genauigkeit als beim	Transienten oder Spitzen, bei		
	Rechteck-FFT. Im	denen sich die Signalniveaus vor		
	Hamming-Fenster ist	und nach dem Ereignis deutlich		
	die	unterscheiden.		
	Frequenzauflösung			
	etwas besser als beim			
	Hanning-Fenster			
Plackman	Beste Magnitude,	Einzelfrequenzsignale, finden von		
DIACKIIIdII	schlechteste	Oberschwingungen höherer		
	Frequenzauflösung	Ordnung.		

Hinweis:

FFT-Auflösung

Die FFT-Auflösung ist der Quotient aus der Abtastrate und der Zahl der FFT-Punkte. Bei einer festgelegten Anzahl von FFT-Punkten ist die Auflösung umso besser, je niedriger die Abtastrate ist.

Nyquistfrequenz

Die Nyquistfrequenz ist die höchste Frequenz, die ein Oszilloskop, das in Echtzeit digitalisiert, ohne Aliasing erfassen kann. Diese Frequenz entspricht der halben Abtastrate. Diese Frequenz wird Nyquistfrequenz genannt. Bei Frequenzen über der Nyquistfrequenz werden nicht genug Abtastpunkte erfasst, was Aliasing verursacht.

REF Funktion

Referenzsignale sind gespeicherte Signale die zur Anzeige ausgewählt werden können. Die Referenzfunktion ist nach dem Speichern des Signales in einem permanenten Speicher verfügbar.

© 2008 RIGOL Technologies, Inc.

2-16

Drücken Sie die REF Taste um in das Referenzsignalmenü zu gelangen.

Abbildung 2- 18 Tabelle 2- 8 Das REF Menü für die Verwendung des internen Speichers

REF	Menü	Einstellungen	Bemerkungen	
		CH1	Auswahl von Kanal 1 als REF Kanal	
		CH2	Auswahl von Kanal 2 als REF Kanal	
Intern	Quelle	MATH/FFT	Auswahl von MATH/FFT als REF	
	Quelle	LA	Kanal	
Speichem			Auswahl von LA als REF Kanal (DS1000D Serie)	
Rücksetzer	Location	Intern Extern	Auswahl des internen Speicherortes Auswahl des externen Speicherortes	
	Speichern		Speichern des REF Signals	
	Imp./Exp.	xp. Gehe zu Importieren/ Expo Menü (siehe Tabelle 2-10)		
	Rücksetzen		Lösche REF Signal	

Abbildung 2-19

Tabelle 2- 9 Das REF Menü für die Verwendung des externen Speichers

REF	Menü	Einstellungen	Bemerkungen
⊂ Quelle ∢ CH1		CH1	Auswahl von Kanal 1 als REF Kanal
Location		CH2	Auswahl von Kanal 2 als REF Kanal
Extern	Quelle	MATH/FFT	Auswahl von Math/FFT als REF
Speichem	Quelle	LA	Kanal
			Auswahl von LA als REF Kanal
Importieren			(DS1000D Serie)
	Location	Intern	Auswahl des internen Speicherortes
<u>Rücksetzer</u>		Fxtern	Auswahl des externen
			Speicherortes
	Speichern		Speichere REF Signalverlauf in
	Speichern		externem Speicherort

Importieren	Gehe zu importieren Menü (siehe Tabelle 2-14)
Rücksetzen	Lösche REF Signal

1. Importieren und exportieren

Drücken Sie $\mathbb{REF} \rightarrow \mathbb{Imp./Exp.}$ und gehen Sie zu folgendem Menü.

Imp./Exp.	Menü	Einstellungen	Bemerkungen
Exploer Dateien Exportieren	Exploer	Pfad Directorys Dateien	Gehe zu Pfad, Ordner oder Datei.
Importierer Datei löscheij	Exportieren		Exportiere die REF Datei von internem Speicher in externen Speicher (siehe Tabelle 2-11)
1L	Importieren		Importiere die REF Datei in internen Speicher
	Datei löschen		Lösche Datei

Abbildung 2-20	Tabelle 2-	10 Das	Importier-/	Exportiermenü
----------------	------------	--------	-------------	---------------

F:\RIGOL\REF_0	Imp./Exp.	
		Exploer
🗃 F:	REF_0.REF	Dateien
È⊡. C⊐RIGOL	■ NewFile_0 ■ NewFile_1 ■ NewFile_10 ■ NewFile_10	Exportierer
	≧ NewFile_11. È NewFile_2 È NewFile_3 È NewFile_4	Importierer
	È NewFile_5 È NewFile_6 È NewFile_7	Datei löschei
	NewFile_8	1L
File Size:1.02MB		

Abbildung 2- 21 Die Importier-/ Exportier-Oberfläche

2. Exportieren

Drücken Sie $\mathbb{REF} \rightarrow \mathbb{Imp.}/\mathbb{Exp.} \rightarrow \mathbb{Exportieren}$ und gehen Sie zu folgendem Menü.

		~~	Tabelle 2- 11 Das Exportiennenu			
	Export		Menü	Einstellungen	Bemerkung	en
			+		Bewegt	den
			Т		Cursor hoch	
					Bewegt	den
		+		Cursor runter		
					Löscht	
	Speichern		×		ausgewählten	
					Buchstaben	
	+		Choicharn		Speichern	der
		-	Speichern		Datei	

Abbildung 2-22 Tabelle 2-11 Das Exportiermenü

Abbildung 2- 23 Exportieroberfläche

3. Speichern

Drücken Sie $\mathbb{REF} \rightarrow \mathbb{Save}$ und gehen Sie zu folgendem Menü.

Abbildung 2-24 Table 2-12 Das Speichermenü

Save	Menü	Einstellungen	Bemerkungen
Exploer Dateien Neue Datei	Exploer	Pfad Directories Dateien	Wechsel zwischen Pfad, Ordner und Datei.
Datei löscher	Neue Datei (Ordner)		Neue Datei in Pfad. Neuen Ordner in Verzeichniss erstellen.
1	Datei löschen (Ordner)		Lösche Datei (Ordner).

F:\RIGOL\REF_0	Save	
		Expluei
🗃 F:	🖹 REF_0.REF	Dateien
È⊕ ⇔RIGOL	È Copy_0.bmp È Copy_1.bmp È NewFile_0	Neue Date
	E NewFile_1 È NewFile_10 È NewFile_11 È NewFile_2	Datei löscher
	È NewFile_3 È NewFile_4 È NewFile_5	
	NewFile_6	1
File Size:1.02MB		

Abbildung 2- 25 Speicheroberfläche

Neue Datei (oder Neuer Ordner)

Drücken Sie $\overline{\text{REF}}$ \rightarrow Save \rightarrow New File (oder New Folder) und gehen Sie zu folgendem Menü.

hading z zo habie z 13 Mena fai das Erstellen neder Datelen				
New File	Menü	Einstellungen	Bemerkungen	
<u></u>	Ť		Bewegt den Cursor hoch.	
)	Ŧ		Bewegt den Cursor runter.	
×	×		Löscht ausgewählte Datei.	
	Speichern		Speichern.	
Speichern				

Abbildung 2-26 Table 2-13 Menü für das Erstellen neuer Dateien

4. Importieren

© 2008 RIGOL Technologies, Inc.

Benutzerhandbuch für DS1000E, DS1000D Serie

Drücken Sie $\mathbb{REF} \rightarrow \mathbb{I}$ mport und gehen Sie zu folgendem Menü.

Abbildung 2-28	Tabelle 2- 14 Das Importiermenü		
Import	Menü	Einstellungen	Bemerkungen
Exploer Dateien	Exploer	Pfad Directorys Dateien	Wechsel zwischen Pfad, Ordner und Datei
Importierer	Importieren		Importiere eine REF Datei in den internen Speicher
1			

F:\RIGOL\REF_0	Import Exploor	
🗐 F:	REF_0.REF	Dateien
È A∃RIGOL	COPY_0.bmp COPY_1.bmp COPY_2.bmp COPY_3.bmp COPY_4.bmp NewFile_0 NewFile_1 NewFile_10 NewFile_11 NewFile_11 NewFile_2 NewFile_3	
File Size:1.02MB		

Abbildung 2- 29 Importieroberfläche

5. Anzeige eines Referenzsignals

Abbildung 2- 30 Anzeige eines Referenzsignals

- 1. Drücken Sie die REF Taste um in das Referenzsignalmenü zu gelangen.
- 2. Drücken Sie den 1. Softkey um den Referenzkanal auszuwählen: CH1, CH2, MATH, FFT oder LA (DS1000D Series).
- 3. Drehen Sie am vertikal ^(©)POSITION und vertikal ^(©)SCALE Drehknopf um das REF Signal in die gewünschte Position zu bringen.
- 4. Drücken Sie den Softkey Nr. 2 um das Speicherziel für das REF Signal auszuwählen.
- 5. Drücken Sie den Softkey Nr.3 um den Signalverlauf als REF zu speichern.

Hinweis: Die Referenzsignalfunktion ist nicht verfügbar im X-Y Modus.

Einstellen der Logikanalyserkanäle (nur DS1000D Serie)

Die DS1000D Serie bietet einen 16 kanaligen Logikanalyator (Abkürzung LA) an, welcher Digitalsignale linear mit den 2 analogen Kanälen messen kann. Einkanal oder Mehrkanäle können mit "Ein" oder "Aus" ausgewählt werden und es kann auch die Signalgröße eingestellt werden. Ändern der Anzeigeposition und Auswahl von verschiedenen Grenzbereichseinstellungen.

Drücken Sie die LA Funktionstaste und gehen Sie zu folgendem Menü.

LA	Menü	Einstellungen	Bemerkungen
D7-D0	D7-D0		Einstellen der Kanalgruppe D7-D0
			(siehe Tabelle 2-16)
D15-D8	D15-D8		Einstellen der Kanalgruppe
Aktuell			D15-D8 (siehe 2-17)
	Aktuell	¢	Kanal auswählen mit drehen am
		<d15-d0></d15-d0>	Multifunktionsdrehknopf (🍤).
Benutzer Benutzer Benutzer	Schwellwert		Modus für alle digitalen Kanäle
		TTL	auswählen. Die
		CMOS	Schwellenspannung kann
		ECL	eingestellt werden, wenn der
		Benutzer	Menüpunkt Benutzer ausgewählt
			wird.
		Ð	Einstellen der Schwellenspannung
	Benutzer	<schwellwert-< td=""><td>mit drehen am</td></schwellwert-<>	mit drehen am
		spannung>	Multifunktionsdrehknopf ($oldsymbol{arphi}$).

Abbildung 2- 31 Table 2- 15 Das Logikanalysatormenü

1. Anzeigen und organisieren der digitalen Kanäle

- Drücken Sie A→D7-D0 oder D15-D8 und gehen Sie zu den Einstellungen für Gruppenkanäle. Ein-/ Ausschalten der Anzeige für digitale Kanäle.
- (2) Drücken Sie Aktuell und wählen Sie einen digitalen Kanal mit drehen am Multifunktionsdrehknopf (♥). Der ausgewählte Kanal wird in roter Farbe angezeigt.

(3) Drehen Sie am vertikal ⁽³⁾ POSITION</sup> Knopf um den Kanal am Bildschirm zu re-positionieren.

Die folgende Abbildung zeigt das dazugehörige Menü.

Abbildung 2- 32 Einschalten des digitalen Kanals

2. Grenzbereichseinstellungen für digitale Kanäle

Drücken Sie \square Schwellwert, wählen Sie einen Logikstandard oder Benutzer um eine gewünschte Schwellenspannung einzustellen.

Die folgende Abbildung zeigt das dazugehörige Menü.

Abbildung 2-33 Grenzbereichseinstellung

Erklärung GrenzbereichseinstellungLogikstandardTTL CMOS ECL USERSchwellspannung1.4V 2.5V -1.3V -8V bis 8V

Einstellen der Kanalgruppe

Drücken Sie $\square \rightarrow D7-D0$ oder D15-D8; Ein-/ Ausschalten der Einzelkanäle oder ganzer Gruppen. Sie können auch die Größe der Signale in 8 Bits oder als Gruppe ändern. Siehe Tabelle 2-16 und 2-17.

Ri

-			
D7-D0	Menü	Einstellungen	Bemerkungen
Kanal	Kanal	D7 D0	Ein-/ Ausschalten der Einzelkanäle
	Kanai	07-00	von D7-D0.
sschalter		Ausschalten	Gemeinsames Ein-/ Ausschalten
Bröße	D7-D0	Anschalten	aller 8 Kanäle.
			Anzeigen von 8 Kanälen in einem
	er Größe	几	Fenster.
icksetzer		л.	Anzeigen von 16 Kanälen in einem
^			Fenster.
	Rücksetzen		Zurücksetzen der Signale für die
			Kanäle D7-D0

Abbildung 2- 34 Tabelle 2- 16 Das Menü der digitalen Kanäle (Seite 1)

Abbildung 2-35 Tabelle 2-17 Das Menü der digitalen Kanäle (Seite 2)

D15-D8			
013-00	Menü	Einstellungen	Bemerkungen
< Kanal	Kanal		Ein-/ Ausschalten der Einzelkanäle
D15-D8	капа	D12-D8	von D15-D8
Ausschalter		Anschalten	Gemeinsames Ein-/ Ausschalten
Größe	015-08	Ausschalten	aller 8 Kanäle.
			Anzeigen von 8 Kanälen in einem
Rücksetzer	Größe	Л	Fenster.
		<u>л</u>	Anzeigen von 16 Kanälen in einem
			Fenster.
	Rücksetzen		Zurücksetzen der Signale für die
			Kanäle D7-D0

1. Ein-/ Ausschalten eines digitalen Kanals

Drücken Sie $\Box \rightarrow D7-D0 \rightarrow Kanal$, und wählen Sie den gewünschten Kanal durch Drehen mit dem Multifunktionsdrehknopf (\checkmark).

Drücken Sie Softkey Nr.1 oder drücken Sie den Multifunktionsknopf (♥) um den Kanal ein-/auszuschalten. Ist der Kanal eingeschaltet sehen Sie diese Zeichen: (■). Ist hingegen der Kanal ausgeschaltet, wird dieses Symbol (■) angezeigt.

Wie in Abbildung 2-36 gezeigt.

Abbildung 2- 36 Ein-/ Ausschalten der digitalen Kanäle

2. Ein-/ Ausschalten digitaler Kanäle erzwingen

Drücken Sie $\square \rightarrow D7-D0 \rightarrow Anschalten / Ausschalten (oder D15-D8 \rightarrow Anschalten / Ausschalten) erzwingt ein-/auszuschalten aller Kanäle. Wollten Sie einen Signalkanal stattdessen ein-/ausschalten, wählen Sie den Kanal durch Drehen des Multifunktionsknopfes (<math>\checkmark$) und dann drücken des 1. Softkeys oder des Multifunktionknopfes(\checkmark).

3. Einstellen der Anzeigegröße der digitalen Kanäle

Drücken Sie $LA \rightarrow D7-D0 \rightarrow Größe$, oder D15-D8 $\rightarrow Größe$, um die Größe der logischen Kanäle auszuwählen.

Wählen Sie Π um 8 Kanäle auf dem Bildschirm darzustellen.

Wählen Sie ____ um alle 16 Kanäle auf dem Bildschirm darzustellen.

4. Zurücksetzen der Anzeige für digitale Kanäle

Drücken Sie $\square \rightarrow D7-D0 \rightarrow R$ ücksetzen, oder D15-D8 $\rightarrow R$ ücksetzen um die Anzeige der digitalen Kanäle zurückzusetzen.

Ein-/ Ausschalten der Kanäle

Die CH1, CH2, Ext. Trigger und LA(DS1000D Serie) Kanäle sind Eingangskanäle. Alle angewandten Funktionalitäten basieren darauf das Instrument mit Kanälen zu bedienen. So können MATH und REF als relativ isolierte Kanäle betrachtet werden.

Um jeden der Kanäle ein/auszuschalten, drücken Sie den entsprechenden Knopf auf der Frontplatte. Die Tastenhintergrundbeleuchtung zeigt an, welcher Kanal gegenwärtig aktiv ist. Drücken Sie die Taste nochmals, um den Kanal auszuschalten. Oder wenn der Kanal gegenwärtig ausgewählt ist, drücken Sie OFF, dies schaltet den Kanal aus, ebenso die Hintergrundbeleuchtung der Taste.

Das Kanalstatussymbol wird an der unteren, linken Bildschirmseite angezeigt, was dem Benutzer hilft den Status eines Kanals zu beurteilen.

Kanalmodus	Einstellung en	Statusindikator
	An	CH1 (gelbe Buchstaben)
Kanal 1 (CH1)	Ausgewählt	CH1 (schwarze Buchstaben)
	Aus	Kein Indikator
	An	CH2 (blaue Buchstaben)
Kanal 2 (CH2)	Ausgewählt	CH2 (schwarze Buchstaben)
	Aus	Kein Indikator
	An	Math (violette Buchstaben)
MATH	Ausgewählt	Math (schwarze Buchstaben)
	Aus	Kein Indikator

Tabelle 2- 18 Status der Kanäle

Hinweis: Durch Drücken der LA Taste werden alle digitalen Kanäle

ein-/ausgeschaltet.

Einstellen der Vertikalposition und Skalierung

Sie können die Vertikalbedienelemente zum Anzeigen der Signale benutzen. Betätigen Sie den SCALE und POSITION Knopf, um die Eingabeparameter einzustellen.

1. Benutzen des <u>OPOSITION</u> Knopfes.

Der vertikal ^{©POSITION} Regler ändert die Position des Signals in allen Kanälen (inklusive MATH und REF). Die Auflösung ändert sich entsprechend der Vertikaleinstellung. Drücken des Knopfes setzt den Kanalversatz auf null. (Diese Funktion ist nur für DS1000D Serie verfügbar; schließt die digitalen Kanäle nicht ein.)

2. Benutzen des vertikal OSCALE Knopfes.

Der vertikal ^{©SCALE} Regler ändert die Vertikalskalierung von Signalen in allen Kanälen (einschließlich MATH und REF, außer LA). Wenn die Volts/Div auf "Grob" gestellt sind, ist die Signalskalierung in 1-2-5 Schritten von 2 mV bis 5 V. Sind die Volts/Div auf "Fein" gestellt, ändert sich die Vertikalskalierung in kleinen Schritten, die zwischen denen der Grobeinstellung liegen.

- 3. Die Kanäle können nur mit den vertikal ^{OPOSITION} und ^{OSCALE} Knöpfen eingestellt werden, wenn diese ausgewählt wurden.
- 4. Während der Vertikaleinstellung wird am linken, unteren Bildschirmrand eine Nachricht angezeigt, in der Farbe des entsprechenden Kanals. Die Einheit ist V (Volt).

Einstellen des Horizontalsystems

Das Oszilloskop zeigt die Zeiteinteilung an der Skalenanzeige. Da alle Signale die gleiche Zeitablenkung verwenden, zeigt das Oszilloskop nur einen Wert für alle aktiven Kanäle, außer für die Benutzung der verzögerten Abtastfunktion oder den alternierenden Trigger.

Die Horizontalbedienelemente können die Horizontalskalierung und die Position des Signalverlaufes ändern. Der Horizontalmittelpunkt des Bildschirms wird als Zeitreferenz für Signalverläufe verwendet. Verändern der Horizontalskalierung bewirkt, dass der Signalverlauf im Bildschirmmittelpunkt gestreckt oder gestaucht wird.

Die Horizontalposition ändert die Position des dargestellten Signals relative zum Trigger Punkt. Drücken Sie die horizontal MENU Taste um das Menü wie folgt aufzurufen.

Time	Menü	Einstellungen	Bemerkungen
Aug		An	Einschalten des verzögerten
Aus	Verzögert		Abtastmodus
			Ausschalten des
Zaithacie		Aus	verzögerten Abtastmodus
Y-T		Y-T	Anzeigen des relativen
Abtastrate			Verhältnisses zwischen
			Vertikal-Spannung und
Tria-Offset		X-Y	Horizontal-Zeit.
Rücksetzer	Zeitbasis		Anzeigen von CH1 Werten auf
			der X Achse; CH2 Werte auf
		Roll	der Y Achse.
			Im Roll Modus wird das
			Anzeigesignal von rechts nach
			links aktualisiert.
	Abtastrate		Anzeigen der
			Systemabtastrate.
	Trig-Offset		Finctollon auf das Zontrum
	Rücksetzen		

Abbildung 2- 37 Table 2- 19 Das horizontal Menü

2-32

Der Parameterstatus wird auf dem Display angezeigt während der Horizontaleinstellung, was Benutzern hilft den Kanalstatus schnell zu beurteilen.

Statusleiste und Symbole für Horizontaleinstellung

Legende:

- ① Die Position des aktuellen Anzeigefensters im Speicher.
- 2 Trigger Position im Speicher.
- ③ Die Trigger Position im aktuellen Anzeigefenster.
- 4 Die horizontale Zeitablenkung (Hauptzeitbasis).
- 5 Die horizontale Trigger Verzögerung entsprechend dem Bildschirmmittelpunktes.

Hinweis

Y-T: Herkömmliches Anzeigeformat bei Oszilloskopen. Zeigt die Spannung eines Aufnahmesignals (auf der Vertikalachse) wie es über eine bestimmte Zeit variiert (auf der Horizontalachse).

X-Y: Das XY Format zeigt Kanal 1 auf der Horizontalachse und Kanal 2 auf der Vertikalachse an.

Roll Modus: In diesem Modus wird das Anzeigesignal von rechts nach links aktualisiert. Keine Trigger oder Horizontalpositionseinstellung möglich während des Roll Modus. Dieser Modus ist nur ab einer Zeitablenkung von 500 ms/div oder niedriger verfügbar.

Slow Scan Mode: Dieser Modus ist verfügbar wenn die horizontale Zeitbasis auf 50 ms/div oder kleiner gestellt wurde. In diesem Modus erfasst das Oszilloskop ausreichend Daten für den linken Teil des Triggers. Warten Sie auf den Trigger, bis der Trigger erscheint.

In diesem Modus erfasst das Oszilloskop ausreichend Daten für den Vortriggerbereich (linke Seite vom Trigger). Wurde der Trigger ausgelöst, wird mit der Datenerfassung im Nachtriggerbereich (rechte Seite vom Trigger) fortgefahren. Es wird empfohlen bei der Darstellung von Niederfrequenzsignalen in diesem Modus die Kanalkopplung auf DC zu stellen.

Time/Div: Horizontale Skalierung. Die Time/Div Einstellung staucht oder streckt einen Signalverlauf.

Verzögerte Abtastung

Die verzögerte Abtastung ist eine Vergrößerung des Signalanzeigefensters. Benutzen Sie die verzögerte Abtastung zur Lokalisierung und horizontalen Expandieren von Teilen des Hauptanzeigefensters um eine detailliertere (höhere horizontale) Auslösung zu erhalten.

Benutzen Sie die verzögerte Abtastfunktion um Teile zu lokalisieren und horizontal zu vergrößern um eine detailliertere Analyse (höhere Horizontalauflösung) eines Signals zu erhalten. Die verzögerte Abtastzeitbasiseinstellung kann nicht kleiner als die der Hauptzeitbasis eingestellt werden.

Drücken Sie die horizontal $MENU \rightarrow Verzögert \rightarrow An$ Taste oder den horizontal OSCALE Knopf um Delayed Scan Modus einzuschalten.

Signalverlauf für horizontale Vergrößerung

Der Bildschirm wird in zwei Teile aufgeteilt.

Die obere Hälfte zeigt den Hauptsignalverlauf an, die untere Hälfte zeigt einen vergrößerten Bereich des Hauptsignalverlaufes an. Dieser Bereich der Hauptanzeige heißt Delayed Scan Fenster.

Zwei schattierte obere Hälften; der nicht schattierte Bereich wird vergrößert in der unteren Hälfte dargestellt. Mit den horizontal <u>POSITION</u> und <u>SCALE</u> Einstellknöpfen kann die Größe und Position der Delayed Scan Funktion bestimmt werden. Der Wert am unteren Bildschirmrand ist der Hauptzeitbasis und der Wert im unteren Bildschirmmittelpunkt zeigt die Delayed Scan Zeit an.

- Benutzen Sie den horizontal ^{(©POSITION} Knopf um die Position des vergrößerten Teils zu ändern.
- Benutzen Sie den horizontal OSCALE Knopf um die verzögerte Abtastauflösung zu ändern.
- Um die Hauptzeitbasis zu ändern schalten Sie den Delayed Scan Modus aus.
- Da der Signalverlauf und dessen Vergrößerung angezeigt wird, sind nur halb so viele Vertikaleinteilungen vorhanden, somit wird die Vertikalskalierung verdoppelt.

Tastenkürzel für die verzögerte Abtastfunktion:

Die Delayed Scan Funktion kann nicht nur über das Menü eingeschalten werden, sondern auch mit dem Druck auf den horizontal SCALE Knopf.

X-Y Format

Dieses Format ist nützlich für den Vergleich der Phasenbeziehung von zwei Punkten. Kanal 1 in der Horizontalachse (X) und Kanal 2 in der Vertikalachse (Y). Das Oszilloskop erfasst ohne Triggerung, Daten werden als Punkte dargestellt.

Drücken Sie die horizontal $MENU \rightarrow Zeitbasis \rightarrow X-Y$ Taste um in den X-Y Modus zu gelangen.

Abbildung 2- 40 X-Y Anzeigeformat

Hinweis: Im Y-T Format, sind alle Abtastraten vorhanden. Aber im X-Y Format, sind 100 MSa/s nicht verfügbar. Häufig hilft es die Abtastrate zu verringern um ein Signal besser darzustellen.

Folgende Modi funktionieren nicht im X-Y Format.

- LA Funktion (DS1000D Serie)
- Automatische Messungen
- Cursor Messungen
- REF und MATH Operationen
- Verzögerter Abtastmodus
- Vektor Anzeigemodus
- Horizontal OPOSITION Knopf
- Trigger Einstellungen

Die horizontal Knöpfe

POSITION:

Der horizontal ^(C)POSITION</sup> Knopf stellt die horizontale Position für Signale an allen (inklusive MATH) Kanälen ein. Die Auflösung dieser Steuerung variiert mit der Zeitbasis. Durch drücken dieses Knopfes wird die Trigger Verzögerung gelöscht und der Trigger auf die Horizontmitte am Bildschirm zurückgesetzt.

③SCALE:

Benutzen Sie den <u>SCALE</u> Knopf um die time/div (Skalenfaktor) für die Hauptzeitbasis oder die Delayed Scan Funktion auszuwählen.

Sollte der Delayed Scan Modus eingeschalten sein, ändert sich die Breite des Anzeigefensters durch ändern der verzögerten Abtastzeitbasis.

Einstellen des Triggers

Der Trigger legt fest wann das Oszilloskop anfängt Daten zu erfassen und ein Signal auf dem Bildschirm darstellt. Ist der Trigger richtig eingestellt, kann eine instabile Anzeige oder ein leerer Bildschirm in aussagekräftige Kurven verwandelt werden.

Wenn ein Oszilloskop mit der Erfassung eines Signals beginnt, sammelt es genügend Daten, dass das Signal links vom Trigger angezeigt werden kann. Die Erfassung geht weiter wenn auf das Eintreten der Trigger Bedingung gewartet wird. Nachdem der Trigger erkannt wurde, erfasst das Oszilloskop genügend Daten um den Signalverlauf rechts vom Trigger anzuzeigen.

Die Trigger Einstellungen auf der Frontabdeckung beinhaltet ein Knopf und 3

Tasten:

- 50%: Setzt sofort den Trigger Pegel auf den Vertikalen Mittelpunkt zwischen die Spitzenwerte des Trigger Signals.
- FORCE: Manuelle Auslösung des Triggers, diese Funktion wird meistens im Einzel- oder Normal-Modus verwendet.
- MENU: Taste die das Triggereinstellmenü aktiviert.

Drücken Sie die Trigger MENU Taste um in das Triggereinstellmenü zu gelangen.

Abbildung 2- 41 Das Triggereinstellmenü

Trigger Modi

Ihr Oszilloskop bietet 7 Trigger Modi an: Flanke, Impulsbreite, Anstieg, Video, Alternieren, Bitmuster (nur DS1000D Serie) und Dauertrigger (nur DS1000D Serie).

Flanke: Eine Flankentriggerung wird ausgelöst, wenn die Spannung am Trigger Eingang einen bestimmten Spannungspegel übersteigt.

Impulsweite: Benutzen Sie diesen Trigger um Impulse mit bestimmter Impulsweite zu finden.

Anstieg: Das Oszilloskop beginnt eine Triggerung entsprechend der Abfall- oder Anstiegsgeschwindigkeit eines Signals

Video: Der Videotrigger wird für Felder oder Linien von Standardvideosignalen verwendet.

Alternieren: Trigger für nicht-synchronisierte Signale der Doppelkanäle.

Muster: Triggerung durch erkennen eines bestimmten Musters.

Dauer: Triggerung innerhalb einer festgelegten Zeit unter Bedingung eines bestimmten Musters.
Flankentrigger

Flankentriggermodus: Der Flankentrigger bestimmt ob das Oszilloskop den Trigger Punkt an der steigenden oder fallenden Flanke eines Signals vorfindet. Wählen Sie aus zwischen steigender, fallender Flanke oder steigender und fallender Flanke.

Drücken Sie Trigger $MENU \rightarrow Modus \rightarrow Flanke$ um das Flankentriggermenü anzuzeigen, wie folgt.

Trigger	Menü	Einstellungen	Bemerkungen
Modus		CH1	Auswahl CH1 als Trigger Signal
Flanke		CH2	Auswahl CH2 als Trigger Signal
		EXT	Auswahl EXT TRIG als Trigger
CHI		AC Line	Signal
	Quelle	D15-D0	Auswahl Netzspannung als Trigger Signal
eitablenkung Automatisch Set Up			Auswahl eines Digitalkanals in D15-D0 als Trigger Quelle (für DS1000D Serie)
	Anstieg	 ▲ steigend ↓ fallend ↑↓steigend & fallend 	Triggerung auf steigende Flanke Triggerung auf fallende Flanke Triggerung auf steigende und fallende Flanken
		Auto	Erfasse Signalverlauf auch wenn Trigger nicht ausgelöst wird.
	Zeitab-	Normal	Erfasse Signalverlauf wenn
	lenkung		Trigger auslöst.
		Single	Wenn Trigger auslöst, erfasse ein Signalverlauf und stoppe dann.
	Set up		Zum Setupmenü, siehe Tabelle 2-38

Abbildung 2-42 Tabelle 2-20 Das Flankentriggermenü

Impulsbreitentrigger

Impulsbreitentriggermodus: Der Impulstrigger erscheint entsprechend der Impulsbreite. Abnormale Signale können durch einstellen der Impulsbreitenkondition gefunden werden.

Drücken Sie Trigger $MENU \rightarrow Modus \rightarrow Impuls$ um das Impulsbreitentriggermenü wie folgt anzuzeigen.

Trigger	Menü	Einstellungen	Bemerkungen
Modus Impuls Quelle CH1 Wann ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	Quelle	CH1 CH2 EXT D15-D0	Auswahl CH1 als Trigger Signal Auswahl CH2 als Trigger Signal Auswahl EXT TRIG als Trigger Signal Auswahl Digitalkanal in D15-D0 als Trigger Quelle (nur DS1000D Serie)
	Wann	$ \begin{array}{c} - 1 \\ (+ Impulsbreite \\ kleiner als) \\ \downarrow + > 1 \\ (+ Impulsbreite \\ größer als) \\ \downarrow + = 1 \\ (+ Impulsbreite \\ gleich wie) \\ \hline - 1 \\ \leftarrow \\ (- Impulsbreite \\ kleiner als) \\ \hline - 2 \\ \downarrow - 1 \\ (- Impulsbreite \\ größer als) \\ \hline - 2 \\ \downarrow - 1 \\ (- Impulsbreite \\ größer als) \\ \hline - 2 \\ \downarrow = 1 \\ (- Impulsbreite \\ gleich wie) \\ \end{array} $	Auswahl Impulskondition
	Einstellung	€ •Breite	Erforderliche Impulsbreite setzen

Abbildung 2-43 Tabelle 2-21 Das Pulsweitentriggermenü (Seite 1/2)

2-42

© 2008 RIGOL Technologies, Inc.

Benutzerhandbuch für DS1000E, DS1000D Serie

Trigger 2/2 Zeitablenkung Automatisch Set Up	Menü	Einstellungen	Bemerkungen
	Zeitablenk- ung	Automatisch Normal Einmalig	Erfasse Signalverlauf auch wenn Trigger nicht ausgelöst wird. Erfasse Signalverlauf wenn Trigger ausgelöst wird. Wenn Trigger auslöst, erfasse ein Signalverlauf und stoppe dann.
	Set Up		Zum Setupmenü, Siehe Tabelle 2-38

Abbildung 2- 44 Tabelle 2- 22 Das Impulsbreitentriggermenü (Seite 2/2)

Hinweis: Der Impulsbreiteneinstellbereich liegt bei 20ns \sim 10s. Ist die Voraussetzung erfüllt, wird der Trigger ausgelöst und der Signalverlauf wird erfasst.

Anstiegstrigger

Anstiegstrigger Modus: Triggerung auf positive oder negative Steigung in einer bestimmten Zeit. Drücken Sie Trigger $MENU \rightarrow Modus \rightarrow Anstieg$ um das Anstiegstrigger Menü wie folgt anzuzeigen.

Abbildung 2-45 Table 2-23 Das Anstiegstriggermenü (Seite 1/2)

Trigger	Menü	Einstellungen	Bemerkungen
Anstieg Quelle CH1	Quelle	CH1 CH2 EXT	Auswahl Kanal 1 als Trigger Quelle. Auswahl Kanal 2 als Trigger Quelle. Auswahl EXT. Kanal als Trigger Quelle.
Zeit	Wann	بالجالج (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Auswahl Anstiegskondition
	Zeit ^[1]	Ð	Ansstiegszeit einstellen.

Hinweis^[1]:

Die Anstiegszeit kann von 20ns bis 10s eingestellt werden. Wenn ein Signal den Trigger Konditionen entspricht, beendet das Oszilloskop die Erfassung.

Abbildung 2-46 Tabelle 2-24 Das Anstiegstriggermenü (Seite 2/2)

Trigger	Menü	Einstellungen	Bemerkungen	
2∕2 Vertikal ⊈ Zeitablenkung Automatisch	Vertikal ^[2]		Wählen Sie das Limit, welches mit dem <a>Thickness <a>LEVEL Knopf eingestellt werden kann.	
		Auto	Erfassung des Signalverlaufes auch wenn keine Trigger Kondition erfüllt wird.	
Set Op	Zeit-		Erfassung des Signalverlaufes	
	ablenk- ung	Normal	wenn die Trigger Kondition erfüllt wird.	
		Einmalig	Wenn die Trigger Kondition erfüllt	
			wird, Erfassung eines	
			Signalverlaufes und stoppe dann.	
	Cot Up		Zum Setup Menü. Siehe Tabelle	
	Secup		2-38.	
2-44	44 © 2008 RIGOL Technologies, In			

Benutzerhandbuch für DS1000E, DS1000D Serie

Hinweis^[2]: Das Limit A/ Limit B oder beide gleichzeitig durch Drehen des ©LEVEL Knopfes anpasst werden.

Video Trigger

Videotriggermodus: Der Videotrigger wird benutzt um komplexe Fernsehsignale anzuzeigen. Die Trigger Schaltung/ Auslöseschaltung erkennt das vertikale und horizontale Intervall des Signalverlaufes und erstellt einen Trigger, basierend auf den Videotriggereinstellung die Sie gewählt haben. Wählen Sie den Videotrigger um auf Felder oder Linien von NTSC, PAL/SECAM Standard-Videosignalen zu Triggern. Voreingestellte Trigger Kopplung ist DC.

Trigger	Menü	Einstellungen	Bemerkungen
Modus Video Quelle CH1 Polarität Sync Alle Leitungen	Quelle	CH1 CH2 EXT	Auswahl CH1 als Trigger Quelle. Auswahl CH2 als Trigger Quelle. Auswahl EXT TRIG als Trigger
	Polarität	Л positiv U negativ	Triggerung auf positiven sync Puls. Triggerung auf negativen sync Puls.
		Alle Leitungen Leitungsnr.	Trigger auf alle Linien. Trigger auf spezielle Linien.
	Sync	Ungerades Feld	Auswahl um auf ungerade Felder zu triggern.
		Gerades Feld	Auswahl um auf gerade Felder zu triggern.

Abbildung 2-47 Table 2-25 Das Videotriggermenü (Seite 1/2)

Abbildung 2-48 Table 2-26 Videotriggermenü (Seite 2/2, Sync ist Leitung)

Trigger	Menü	Einstellunge n	Bemerkungen
2/2 Leitungsnr	Leitungsnr. ^[1]	•) < Sync >	Wähle spezielle Linie für sync.
No.1 Standard	Standard	PAL/SECM NTSC	Wähle Videostandard.
NTSC Zeitablenkung Automatisch Set Up	Zeitablenkung	Automatisch Normal Einmalig	Erfassung eines Signalverlaufes auch wenn Trigger nicht ausgelöst wurde. Erfassung eines Signalverlaufes wenn Trigger ausgelöst wurde. Wenn Trigger ausgelöst wird, Erfassung eines Signalverlaufes und stoppe dann.
	Set Up		Zum Setupmenü, Siehe Tabelle 2-39

Hinweis^[1]: Die

Liniennummer kann von 1 bis 525 für NTSC Standard eingestellt werden, bei PAL/ SECAM von 1 bis 625.

Abbildung 2- 49 Tabelle 2- 27 Das Videomenü (wenn Sync für alle Leitungen eingestellt ist, ungerade und gerade Linien)

Trigger	Menü	Einstellungen	Bemerkungen
2/2 Standard NTSC Zeitablenkung Automatisch Set Up	Standard	PAL/SECAM NTSC	Wähle Videostandard
	Zeitablen kung	Automatisch Normal Einmalig	Erfassung des Signalverlaufes auch wenn Trigger nicht ausgelöst wurde. Erfassung des Signalverlaufes wenn Trigger ausgelöst wird. Wenn Trigger ausgelöst wird, Erfassung des Signalverlaufes und dann stoppen.
	Set Up		Zum Setupmenü, siehe Tabelle 2-39.

2-46

Eckpunkte

Sync Puls: Wenn eine positive Polarität ausgewählt wurde, tritt der Trigger bei negativen sync Pulsen auf. Hat das Videosignal positive sync Pulse, benutzen Sie die negative Polaritätsauswahl.

Abbildung 2- 51 Video Trigger: Feld Synchronisation

Alternierender Trigger

Alternierender Trigger Modus: Wenn der alternierende Trigger eingeschalten ist, kommt die Trigger Quelle von 2 vertikalen Kanälen. Dieser Modus kann benutzt werden um 2 nicht zusammenhängende Signale zu beobachten. Sie können zwischen zwei verschiedenen Triggermodi für die zwei Vertikalkanäle wählen. Die Optionen sind wie folgt: Flanke, Impuls, Anstieg und Video. Die Information des Trigger Levels der zwei Kanäle wird im Bildschirm oben rechts angezeigt.

Drücken Sie $MENU \rightarrow Modus \rightarrow Alternierend$ um das alternierende Trigger Menü anzuzeigen.

Trigger	Menü	Einstellungen	Bemerkungen
Alternierend	Auswähl	CH1	Setze Trigger Modus für Kanal 1
Auswählen	en	CH2	Setze Trigger Modus für Kanal 2
CH1 Typ Flanke Anstieg Set Up	Тур	Flanke	Auswahl Flankentrigger als Trigger Modus
	Anstieg	▲ (Steigend)▲ (Fallend)	Trigger auf steigende Flanke Trigger auf fallende Flanke
	Set Up		Zum Setupmenü. Siehe Tabelle 2-38.

Abbildung 2- 52 Tabelle 2- 28 Das Alternier Menü (Trigger Typ: Flanke)

Trigger	Menü	Einstellungen	Bemerkungen
MOOUS Alternierend		CH1	Setze Trigger Modus für
Auewöhlen	Auswä		Kanal 1
	hlen	CUD	Setze Trigger Modus für
		CH2	Kanal 2
Typ Limpule	Tun	Impuls	Setze Impulstrigger für
Wann	тур	Inpuis	Kanal
Wann	Wann	<pre></pre>	Auswahl Impulskondition
		wie)	

Abbildung 2-53 Tabelle 2-29 (Trigger Typ: Impuls, Seite 1/2)

Abbildung 2- 54 Tabelle 2- 30 Das Alternier Menü (Trigger Typ: Impuls, Seite 2/2)

Trigger	Menü	Einstellungen	Bemerkungen
	Einstellu	Q	Satza Impulsbraita dar Bulsa
2/2	ng	<impulsbreite></impulsbreite>	
	Set Up		Zum Setupmenü. Siehe Tabelle 2-38.
1.00us			
Set Up			

Abbildung 2- 55 Tabelle 2- 31 Das Alternier Menü (Trigger Typ: Anstieg, Seite 1/2)

Trigger Modus Alternierend	Menü	Einstellungen	Bemerkungen
			Setze Trigger Modus für
Auswählen	Auswählen	CH1 CH2	Kanal I Setze Trigger Modus für
CH1 Typ Anstieg Wann 小午 1/2			Kanal 2
	Тур	Anstieg	Setze Anstiegstrigger für Vertikalkanal
	Wann	╪╵┿╵┿╵┿╵┿ ┾╴┾╶┿╵┿╵	Auswahl Triggerkondition

Abbildung 2- 56 Tabelle 2- 32 Das Alternier Menü (Trigger Typ: Anstieg Seite 2/2)

Trigger	Menü	Einstellungen	Bemerkungen
2/2 7eit	Zeit	€ <zeiteinstellung></zeiteinstellung>	Wähle Anstiegszeit
2en 1.00us Vertikal	Vertikal		Auswahl Limit, das mit dem <u>LEVEL</u> Knopf eingestellt wird.
Set Up	Set Up		Zum Setupmenü. Siehe Tabelle 2-38.

Tuinung L								
Modus	Menü	Einstellungen	Bemerkungen					
Alternierend	Augwählen	CH1	Setze Trigger Modus für Kanal 1					
Auswählen	Auswallien	CH2	Setze Trigger Modus für Kanal 2					
	Тур	Video	Video Trigger für den Kanal					
Video Polarität	Polarität	Л positiv U negativ	Triggerung auf positiven sync Puls Triggerung auf negativen sync Puls					
1/2								

Abbildung 2- 57 Tabelle 2- 33 Das Alternier Menü (Trigger Typ: Video, Seite 1/2)

Abbildung 2- 58 Tabelle 2- 34 Das Alternier Menü (Video, Leitungsnummer Seite 2/2)

Trigger	Menü Einstellungen		Bemerkungen
2/2	Sync	ALL lines Line Num	Triggerung auf alle Leitungen. Triggerung auf spezielle Leitungen.
Sync Leitungsnr Leitungsnr		Odd field Even field	Setze Triggerung auf ungerade oder gerade Felder.
No.1 Standard	Leitungs- nummer	€ <leitungs- auswahl ></leitungs- 	Wähle spezifizierte Leitungszahl für sync
Set Up	Standard	PAL/SECM NTSC	Wähle Videostandard
	Set Up		Zum Setupmenü, Siehe Tabelle 2-39.

Abbildung 2- 59 Tabelle 2- 35 Das Alternier Menü (Trigger Mode: Video, Alle Leitungen, Gerade Felder oder ungerade Felder, Seite 2/2)

Trigger	Menü	Einstellungen	Bemerkungen			
		Alle Leitungen	Triggerung auf alle Linien.			
2/2		Leitunsnr.	Triggerung on spezifizierten Linien.			
Sync Alle Leitungen	Sync	Ungerade	Setzen der Triggerung auf ungerade			
Standard		Feider	oder gerade Felder.			
NTSC		Gerade Felder	_			
	Standard	PAL/SECM	Auswahl des Videostandard			
Set Up	Stanuaru	NTSC				
	Set Up		Zum Setupmenü, siehe Tabelle 2-39			

Mustertrigger (nur DS1000D Serie)

Mustertriggermodus: Der Mustertrigger identifiziert Trigger Bedingungen anhand von Voreinstellungen. Die Voreinstellungen der logischen Beziehungen aller Kanäle sind High (H), Low (L) und Ignore(X). Drücken Sie Trigger MENU → Modus → Muster um das Pattern Menü anzuzeigen.

Abbildung 2-60	Tabelle 2- 36 Das Patter	n Trigger Menü
----------------	--------------------------	----------------

Trigger	Menü	Einstellungen	Bemerkungen				
Modus	Calaat		Auswahl digitalen Kanals für				
Muster	Select	00-010	Mustertrigger				
Auswanien		Н	High (Hoch)				
DØ		L	Low (Tief)				
Code	Code	Х	Ignoriere				
Zeitablenkung		<u> </u>	Steigende Flanke				
		الح	Fallende Flanke				
Automatistri		Automatisch	Erfassung eines Signalverlaufes				
Set Up			auch wenn Trigger nicht				
	Zeitablenkung		ausgelöst wurde.				
		Normal	Erfassung eines Signalverlaufes				
			wenn Trigger ausgelöst wurde.				
		Einmalig	Wenn Trigger ausgelöst wird,				
			Erfassung eines Signalverlaufes				
			und stoppe dann.				
	Set Un		Zum Setupmenü, siehe Tabelle				
	Ser Oh		2-40.				

Eckpunkte:

- **1. H** (**High**): High-Logik: Die Spannung ist größer als die Schwellwerteinstellung.
- 2. L (Low): Low-Logik: Die Spannung ist kleiner als die Schwellwerteinstellung.
- **3. X (Ignoriere):** Ignorieren. Wenn alle Kanäle unterdrückt sind, wird das Oszilloskop nicht getriggert.

Steigende (→ **) oder fallende Flanke (** ★): Wähle die Vorwahl "Flanke", danach kann unterschieden werden zwischen steigender oder fallender Flanke. Wenn eine Flanke ausgewählt ist, sollte die Voreinstellung auch für die anderen Kanäle zutreffen und das Oszilloskop wird auf die ausgewählte Flanke getriggert. Ist keine Flanke ausgewählt, wird das Oszilloskop auf die letzte Flanke getrigger welche, wahr ist.

Flanke mit eingestelltem Code

Sie können nur eine Vorwahl für eine Flanke treffen. Sollten Sie eine Flanke ausgewählt haben, danach eine andere für einen anderen Kanal, wird die erste Flanke auf X (Ignorieren) gesetzt.

Dauertrigger (nur DS1000D Serie)

Dauertriggermodus: Triggerung in eingestellter Zeit wenn die voreingestellten Bedingungen erfüllt werden.

Drücken Sie $MENU \rightarrow Modus \rightarrow Dauer$ um das Dauertriggermenü wie folgt anzuzeigen.

Abbildung 2-61 T	abelle 2-37 Das	Dauertriggermenü	(Seite 1/2)
------------------	-----------------	------------------	-------------

Menü	Einstellungen	Bemerkungen		
Auswähle		Auswahl eines digitalen Kanals für		
n	015-00	den Dauertrigger		
	Н	High-Pegel		
Code	L	Low-Pegel		
	Х	Ignorieren		
	<	Auswahl der zeitlichen		
Qualifier	>	Regrepzungen		
	=	Degrenzungen		

Abbildung 2- 62 Tabelle 2- 38 Das Dauertriggermenü (Seite 2/2)

Trigger	Menü	Einstellungen	Bemerkungen
		¢	
 	Zeit	<zeit-< td=""><td>Auswahl Dauer- und Limitsymbolzeit.</td></zeit-<>	Auswahl Dauer- und Limitsymbolzeit.
		einstellung>	
1.00us Zaitablankung			Erfassung eines Signalverlaufes auch
Automatiech			wenn Trigger nicht ausgelöst wurde.
Automatisch	Zeit-	Auto	Erfassung eines Signalverlaufes wenn
Set Up	ablenk-	Normal	Trigger ausgelöst wurde.
	ung	Einmalig	Wenn Trigger ausgelöst wird,
			Erfassung eines Signalverlaufes und
			stoppe dann.
	Set Up		Zum Setupmenü, siehe Tabelle 2-40.

Eckpunkte:

- **1. H (High):** High-Pegel: Spannung ist größer als der eingestellte Schwellwert.
- 2. L (Low): Low-Pegel: Spannung ist kleiner als der eingestellte Schwellwert.
- **3. X (Ignoriere):** Ignorieren: Wenn alle Kanäle unterdrückt sind, wird das Oszilloskop nicht getriggert.
- **4. Qualifier:** Ein Timer beginnt wenn die Einstellungen erfüllt sind. Der Dauertrigger tritt in der vom Qualifier eingestellten Zeit auf.

Trigger Setup

Einstellen verschiedener Trigger Einstellungen entsprechend der Triggermodis. Wenn D15-D0 als Quelle bei Flanke oder Impuls ausgewählt wurde (DS1000D Serie) ist nur die Sperrzeit verstellbar. Wenn die Quelle im Anstiegstrigger ein nicht-digitaler Kanal ist, können nur Trigger Kopplung, Triggersensivität und Sperrzeit eingestellt werden. Für Videotrigger, können Sensivität und Sperrzeit eingestellt werden. Für den Bitmustertrigger und den Dauertrigger (DS1000D Serie) ist nur die Sperrzeit einstellbar.

Set Up	Menü	Einstellungen	Bemerkungen
Kopplung DC Sensitivity 0.38div Sperrzeit Søøns Sperrzeit	Kopplung	DC AC HF verwerfen LF verwerfen	Keine Unterdrückung von Signalanteilen. Blockiert DC Signalanteile. Unterdrückung von hoch- frequenten Signalanteilen. Unterdrückung von DC- und Niederfrequenzsignalanteilen.
	Sensitivity	◆ <sensitivity Einstellung></sensitivity 	Auswahl der Trigger Sensitivität, von 0.1div bis 1div.
	Sperrzeit	€ Sperrzeit- Einstellung>	Auswahl des Zeitfensters vor einer weiterer Triggerung, Einstellbereich von 500ns bis 1.5s.
	Sperrzeit	Rücksetzen	Rücksetzen der Sperrzeit auf 500ns.

Abbildung 2- 63 Tabelle 2- 39 Das Trigger Setupmenü (Einstellungen für Trigger

Konnlung, Triggersensivität und Sperrzeit)

2-56

Abbildung 2- 64	I Tabelle 2	2- 40	Das	Trigger	Setupmenü	(Einstellungen	für
Sensitivität und Sperrzeit)							

Set Up	Menü	Einstellungen	Bemerkungen					
ensitivity 0.38div Sperrzeit	Sensitivity	€ Sensitivity Einstellung>	Auswahl der Trigger Sensitivität					
500ns Sporrzoit			Auswahl des Zeitfensters					
open zen Süekestzes	Sperrzeit	<sperrzeit< td=""><td>vor einer weiteren</td></sperrzeit<>	vor einer weiteren					
Rucksetzer		Einstellung>	Triggerung					
	Sperrzeit	Rücksetzen	Rücksetzen der Sperrzeit					
			Zeit auf 500ns.					
1								

Abbildung 2- 65 Tabelle 2- 41 Das Trigger Setupmenü (Einstellungen nur für Sperrzeit)

Set Up Snerrzeit	Menü	Einstellungen	Bemerkungen		
Sperrzeit Seens Sperrzeit Rücksetzer	Sperrzei t	€ <sperrzeit Einstellung></sperrzeit 	Auswahl des Zeitfensters vor einer weiteren Triggerung.		
	Sperrzei t	Rücksetzen	Rücksetzen der Sperrzeit auf 500ns.		

© 2008 RIGOL Technologies, Inc.

t.

Trigger Sperrzeit

Trigger Sperrzeit kann komplexe Signalverläufe stabilisieren, wie z.B. die Pulsweite. Die Sperrzeit ist die Wartezeit des Oszilloskops, bis eine neue Triggerung erfolgt. Während der Sperrzeit, wird das Oszilloskop nicht getriggert, bis die Sperrzeit endet. Zum Beispiel: Um den ersten Impuls von einer Impulsgruppe zu Triggern, kann der Benutzer die Sperrzeit für Impulsweitengruppen einstellen.

Abbildung 2- 66 Triggersperrzeit Anzeige

Benutzung des Triggersperrzeit:

- 1. Drücken Sie die Trigger MENU Taste um das Trigger Menü anzuzeigen.
- 2. Drücken Sie die Set Up Taste um das Setupmenü aufzurufen.
- 3. Drehen Sie am Multifunktionsknopf (♥) um die Sperrzeit zu ändern, bis der Signalverlauf stabil ist.
- 4. Drücken von Rücksetzen kann die Sperrzeit zurücksetzen auf den Standardwert.

Trigger Eckpunkte

- **1. Trigger Quelle:** Der Trigger kann von verschiedenen Quellen ausgelöst werden: Eingabekanäle (CH1 und CH2), Netzspannung, Ext.
- **CH1 oder CH2:** Sind die am meisten benutzten Trigger Quellen. Der Kanal funktioniert wenn er als Trigger Quelle ausgewählt wurde, egal was angezeigt wird oder nicht.
- Ext Trig: Das Oszilloskop kann von einer dritten Quelle getriggert werden während es Daten von CH1 und CH2 aufnimmt, zum Beispiel von einem externen Taktgeber oder einem Signal von einem anderen Teil der Testschaltung. Die Ext Trigger Quelle benutzt ein externes Trigger Signal, verbunden am EXT TRIG Anschluss. Das "EXT TRIG" Signal wird direkt benutzt; es hat eine Triggerlevelbandbreite von -1.2V bis +1.2V.
- Netzspannung: Die Netzspannung kann zur Signaldarstellung von netzsynchronen Signalen verwendet werden, wie z.B. für Beleuchtungsanlagen und Spannungsversorgungen. Das Oszilloskop wird durch sein Netzteil getriggert; ein AC Trigger Signal wird nicht benötigt. Wenn die Netzspannung als Trigger Quelle ausgewählt wurde, wird das Oszilloskop automatisch auf DC Kopplung und das Trigger Level auf 0V gesetzt.
- **2. Abtastmodus:** Der Abtastmodus bestimmt, wie sich das Oszilloskop in Abwesenheit eines Trigger Ereignisses verhält. Das Oszilloskop stellt 3 Trigger Modi zur Verfügung: Auto, Normal und Einmalig.
- Automatisch: Dieser Modus erlaubt dem Oszilloskop Signale zu erfassen auch wenn keine Trigger Bedingung gefunden wird. Tritt keine Trigger Bedingung ein während das Oszilloskop auf eine bestimmte Periodendauer wartet (festgelegt durch die Zeitbasiseinstellung), triggert es sich selbst.

Wenn ungültige Trigger erzwungen werden, kann das Oszilloskop den Signalverlauf nicht abgleichen und der Signalverlauf scheint über das Display zu rollen. Wenn gültige Trigger auftreten, wird die Anzeige stabil auf dem Bildschirm dargestellt.

Jeder Faktor der eine Instabilität des Signalverlaufes hervorruft, kann durch den Auto Trigger aufgespürt werden, wie z.B. die Ausgabe der Spannungsversorgung.

Hinweis: Wenn die Horizontaleinstellung unter 50 ms/div eingestellt wurde, kann im Auto Modus kein Trigger Signal mehr erfasst werden.

- Normal: Der "Normal-Modus" erlaubt es dem Oszilloskop nur eine Erfassung eines Signalverlaufes wenn es getriggert wird. Wenn kein Trigger auftritt, wartet das Oszilloskop und der vorherige Signalverlauf wird auf dem Bildschirm dargestellt. Tritt ein Trigger auf, wird der Signalverlauf auf dem Bildschirm dargestellt.
- **Einmalig:** Im "Einmalig-Modus", nach dem drücken der RUN/STOP Taste, wartet das Oszilloskop auf einen Trigger. Während ein Trigger auftritt, erfasst das Oszilloskop einen Signalverlauf auf und stoppt dann.
- **3. Kopplung:** Die Trigger Kopplung entscheidet welche Frequenzbestandteile zur Trigger Schaltung passieren. Kopplungstypen beinhalten AC, DC, LF und HF Unterdrückung.
- **AC:** "AC-Kopplung" unterdrückt Gleichspannungsanteile und dämpft das Signal unter 10Hz.
- **DC:** "DC-Kopplung" lässt sowohl AC und DC Spannungsanteile passieren.
- **LF verwerfen:** "LF verwerfen" unterdrückt Gleichspannungsanteile, und dämpft alle Signale mit einer Frequenz kleiner als 8 kHz.
- **HF verwerfen:** "HF verwerfen" dämpft alle Signale mit einer Frequenz größer als 150 kHz.
- **4. Vortrigger/verzögerter Trigger:** Daten die vor und nach der Triggerung erfasst wurden.

Die Trigger Position ist normalerweise in der horizontalen Mitte des Bildschirms festgelegt. Im Vollbildmodus können die 6div Daten des Vor-Triggers und des verzögerten Triggers eingesehen werden. Mehr Daten des Vor-Triggers und des 1. verzögerten Triggers können mit dem Drehen des horizontal OPOSITION Knopfes eingesehen werden.

Diese Funktion ist sehr hilfreich für die Analysierung der Ergebnisse welche zum Trigger Punkt geführt haben. Alles auf der rechten Seite des Trigger Punktes wird Nach-Trigger Information genannt. Der Verzögerungsbereich (Vor-Trigger und Nach-Trigger Information) hängt von der eingestellten Ablenkgeschwindigkeit ab. 5. Einstellbare Trigger Sensitivität: Um den Einfluss von Rauschen der Umgebung zu vermeiden und einen stabilen Trigger zu erlangen, hat die Trigger Schaltung eine einstellbare Empfindlichkeit. Bei der DS1000E und DS1000D Serie kann die Empfindlichkeit von 0.1div bis 1.0div eingestellt werden. Wenn eine Empfindlichkeit von 1.0div eingestellt ist, beeinflusst die Trigger Schaltung kein Signal mit Spitze-Spitze Amplitude mit weniger als 1.0 div um den Einfluss von Rauschen zu vermeiden.

Einstellen/ Auswählen des Erfassungsmodus

Acquire zeigt die Menütaste für den Erfassungsmodus auf der Frontabdeckung.

Erfassungsmodus Setup-Taste

Drücken Sie die Acquire Taste, um das Erfassungsmenü wie folgt anzuzeigen:

quire	Menü	Einstellungen	Bemerkungen
elwert elwerte 32 astung htzeit hertiefe ormal x / x An	Erfassung	Normal Mittelwert Peak erfassen	Normaler Erfassungsmodus Durchschnittserfassungsmodus Peak Erfassungsmodus
	Mittelwerte [1]	2 bis 256	Auswahl der Schritte. Ist der Wert von 2 zur n-ten Potenz. Einstellen der Mittelwerte von 2 bis 256.
	Abtastung	Echtzeit Äquivalenzzeit	Echtzeit Abtastmodus Synchronisierter Abtastmodus
	Speichertiefe	Langzeit Normal	Setze Speicher auf 512kpts oder 1Mpts Setze Speicher auf 8kpts oder 16kpts
	Sinx/x ^[2]	An Aus	Setze Interpolationsmodus auf sinx/x Setze Interpolation Modus auf Linie

Abt Ec Speid Ni Sir

Hinweis^[1]: Diese Funktion wird im "Durchschnittserfassungsmodus" verwendet; **Hinweis**^[2]: Diese Funktion wird im "Echtzeit" Abtastmodus verwendet.

Der angezeigte Signalverlauf ist anders, wenn andere Erfassungsmodi und Abtastraten verwendet werden:

- Auswahl der Echtzeit Erfassung um Einzelauslösungen oder Impulssignale zu beobachten.
- Auswahl der Äquivalenzzeit um sich wiederholende hochfrequente Signale zu beobachten.
- Um das angezeigte weiße Rauschen zu reduzieren, wählen Sie die Mittelwert Erfassung. In diesem Modus wird die Bildschirmaktualisierung langsamer.
- Um Signal Aliasing zu vermeiden, wählen Sie Peak erfassen.

Der angezeigte Singalverlauf ändert sich im Zusammenhang mit den Einstellungen des Erfassungsmenüs.

Abbildung 2- 69 Signal mit Rauschen, und ohne Mittelwertabtastung

Abbildung 2- 70 Angezeigtes Signal mit Mittelwertabtastung

Abbildung 2- 71 Signal ohne Peak erfassen

Abbildung 2- 72 Signal mit Peak erfassen

Stoppe Erfassung: Wenn das Oszilloskop Signalverläufe erfasst, ist der Signalverlauf in einem aktiven Zustand; wenn die Erfassung gestoppt wird, werden eingefrorene Signalverläufe angezeigt. Die Position und Skalierung kann immer noch durch die Vertikal- und Horizontaleinstellung eingestellt werden.

Eckpunkte

Echtzeitabtastung: Das Oszilloskop hat eine Echtzeitabtastung von bis zu 1GSa/s. Bei einer Zeitablenkung von 50ns oder schneller, benutzt das Oszilloskop die sine(x)/x Interpolation um die horizontale Zeitablenkung zu erweitern.

Äquivalenzzeitabtastung: Bekannt als periodische Abtastung um bis zu 40ps Horizontalauflösung zu erreichen (äquivalent 25Gsa/s). Dieser Modus ist geeignet für die Beobachtung wiederholender Signale; wird nicht empfohlen für Einzelauslösungen oder Impulssignale.

Normal Erfassung: Das Oszilloskop zeichnet Signalverläufe in gleichen Zeitintervallen auf.

Mittelwerterfassung: Wenden Sie die Durchschnittsberechnung auf Ihren Signalverlauf an um un-korreliertes Rauschen zu reduzieren und die Messgenauigkeit zu verbessern. Verringerung von weißem oder un-korreliertem Rauschen in der Anzeige. Der Durchschnittssignalverlauf ist ein aktiver Durchschnitt über eine bestimmte Anzahl von Erfassungen von 2 bis 256.

Peak erfassen: "Peak erfassen" erfasst die Maximum- und Minimumwerte eines Signalverlaufes. Findet höchste und niedrigste Aufnahmepunkte über viele Aufnahmen.

Einstellen des Anzeigesystems

Display zeigt die Menütaste für das Anzeigesystem auf der Frontplatte.

Drücken Sie die Display Taste um das Einstellungsmenü für das Anzeigesystem aufzurufen.

Abbildung 2-74	Tabelle 2-43	Das Anzeigemenü	(Seite 1/2)
----------------	--------------	-----------------	-------------

Display Typ	Menü	Einstellung en	Bemerkungen
Löschen		Vektoren	Anzeige des Signalverlaufs als Vektoren
Persistent	тур	Punkte	Anzeige des Signalverlaufs als Punkte
Aus Intensität	Löschen		Lösche alle angezeigten Signalverläufe auf dem Bildschirm
	Persistent	Unendlich	Die Abtastpunkte werden angezeigt bis die Persistenz auf "OFF" gestellt wird. Schalte Persistenz aus.
	Intensität	€ <prozentsatz></prozentsatz>	Wähle Signalverlaufintensität, Einstellbereich von 0% bis 100%

Display	Menü	Einstellungen	Bemerkungen
2/2 Gitter Helligkeit	Gitter		Anzeige von Gitter und Koordinaten auf dem Bildschirm Gitter ausschalten Gitter und Koordinaten ausschalten
Menüanzeige Unendlich	Helligkeit	€ V Prozentsatz	Wähle Gitterhelligkeit
	Menü- anzeige	1s 2s 5s 10s 20s Unendlich	Wähle Zeit bevor das Menü verschwindet. Das Menü wird nach der eingestellten Zeit verborgen, wenn der letzte Tastendruck erfolgte.

Abbildung 2-75 Tabelle 2-44 Das Anzeigemenü (Seite 2/2)

Eckpunkte:

- **1. Anzeigetyp:** Die Anzeigeeigenschaften beinhalten Vektor- und Punktdarstellung. Bei Vektordarstellung verbindet das Oszilloskop die Punkte durch digitale Interpolation unter Einbezug der Linearität und Sin(x)/x. Die Sin(x)/x Interpolation ist für die Echtzeitabtastung geeignet und ist effektiver bei einer Zeitbasis von 50ns oder schneller.
- **2. Wiederholfrequenz:** Eine wichtige Betriebseigenschaft von digitalen Oszilloskopen. Sie gibt die Anzahl der Bildwiederholungen pro Sekunde an und beeinflusst die Eigenschaft der Signalverläufe.

Einstellen der Signalverlaufsintensität

Die Standardeinstellung für den Multifunktionsknopf (*) ist die Anpassung der Signalintensität.

Speichern und Wiederaufrufen

Storage zeigt die Menütaste für das Speichersystem auf der Frontplatte.

Abbildung 2- 76 Taste für Speichereinstellungen

Drücken Sie die Storage Taste um das Menü für die Speichereinstellungen aufzurufen. Signalverläufe und Einstelllungen können gespeichert und wiederaufgerufen werden von internem als auch externem Speicher. Die Signalverlaufs-, Einstellungs-, Bitmap- und CSV-Dateien können auf externem Speicher erstellt und gelöscht werden (Hinweis: Interne Dateien können gelöscht oder überschrieben werden). Das System unterstützt englische/ chinesische Tasteneingabe.

Signal Verlauf und Einstellungen, Menü wie folgt:

Abbildung 2- 77 Tabelle 2- 45 Das Speichereinstellungsmenü (Für Signalverlauf und Einstellungen)

Storage Speicherung Wellenformen	Menü	Einstellun gen	Bemkerungen
Intern	Speicherung	Waveform Setups	Speichern oder wiederaufrufen von Signalverläufen oder Geräteeinstellungen
Extern	Intern		Zum Menü für interne Speicheroperation (siehe Tabelle 2-48)
Disk Mana.	Extern		Zum Menü für externe Speicheroperation (siehe Tabelle 2-49)
	Disk Mana.		Zum Disk Manage Menü (siehe Tabelle 2-50)

Abbildung 2-78 Tabelle 2-46 Das Speichermenü (Für Bitmap)

Storage Speicherung	Menü	Einstellung en	Bemerkungen
 Bitmap Para, Save 	Speicherung	Bit map	Erstellen oder löschen einer Bitmap-Datei
Aus Extern	Para. Save	An Aus	Speichern der aktuellen Oszillskopeinstellungen in verschiedenen Formaten, mit dem gleichen Dateinamen
Invertiert Aus	Extern		Zum Menü für externe Speicheroperation (siehe Tabelle 2-49)
Disk Mana.	Disk Mana.		Zum Disk Manage Menü (siehe Tabelle 2-50)

Abbildung 2- 79	Tabelle 2- 47 Da	as Speichermenii	(Für CSV)
π bbildulig $Z = 7 J$		13 Speichermenu	(10000)

Storage
Speicherung
CSV
Datentiefe
Angezeigt
Para. Save
Aus
LADataType
 Hex
1⁄2

Menü	Einstellung en	Bemerkungen
Speicherung	CSV	Erstellen oder löschen einer CSV-Datei
	Angezeigt	Speichern der aktuell
Datentiefe		angezeigten Signalverlaufswerte in einer CSV Datei
	Maximum	Speichern der ganzen
		Signalverlaufswerte in einer CSV Datei im Speicher
Para. Save	An Aus	Speichern der aktuellen Oszilloskop Einstellungen in einem anderen Dateiformat mit dem gleichen Dateinamen
	Hex	Speichern der Werte im Hexadezimalformat
LA Data Type ^[1]	Decimal	Speichern der Werte im Dezimalformat
	Binary	Speichern der Werte im Binärformat
Extern		Zum Menü für externe Speicheroperation (siehe Tabelle 2-49)
Disk Manage		Zum Disk Manage Menü (siehe Tabelle 2-50)

Hinweis^[1] : Nur bei DS1000D Serie anwendbar.

Abbildung 2- 80 Tabelle 2- 48 Das Speichermenü (Für Werkseinstellungen)

Storage Speicherung	Menü	Einstellu ngen	Bemerkungen
< Hersteller	Speicherung	Hersteller	Wiederherstellen der Werkseinstellungen
	Laden		Wiederaufrufen von Werks- oder Dateieinstellungen
Laden	Disk Mana.		Gehe zu Disk Manage Menü (siehe Tabelle 2-50)
Disk Mana.			

Interner Speicher

Drücken Sie Storage → Internal um zu folgenden Menü zu gelangen.

Abbildung 2-81 Tabelle 2-49 Das interne Speichermenü

Internal Speicherort	Menü	Einstellun gen	Bemerkungen
E)Int_01 Laden Speichem	Internal	Int_00 (S)	Auswahl des Speicherorts für Dateien im internen Speicher
		Int_09 (N)	
Datei löscheh	Laden		Wiederaufrufen von Signalverlaufs- und Einstellungsdateien aus dem internen Speicherort
	Speichern		Speichern der Signalverlaufs- und Einstellungsdateien in internen Speicherort
	Datei löschen		Löschen der ausgewählten
	(Folder)		Datei (Ordner)

Externer Speicher

Drücken Sie Storage → External um zu folgendem Menü zu gelangen.

External	Menü	Einstellungen	Bemerkungen
Exploer Dateien Neue Datei	Exploer	Pfad Directories Dateien	Wechsel zwischen Pfad, Verzeichnis und Datei
Datei löschei	Neue Datei (Ordner)		Erstellen einer neuen Datei oder eines Ordners
Laden	Datei löschen (Ordner)		Löschen der ausgewählten Datei (Ordner)
L	Laden		Wiederaufrufen von Signalverläufen und Einstellungen von einem USB-Massenspeicher

Abbildung 2-82 Tabelle 2-50 Das Speichermenü

Abbildung 2- 83 Anzeige des Dateisystems

© 2008 RIGOL Technologies, Inc.

Benutzerhandbuch für DS1000E, DS1000D Serie

Disk Manager

Drücken Sie Storage → Disk Mana. um zum folgenden Menü zu gelangen.

Abbildung 2-84	Tabelle 2- 51	Das Disk Manage	Menü (Seite 1/2)
----------------	---------------	-----------------	------------------

Disk Mana.	Menü	Einstellungen	Bemerkungen
Exploer Dateien Neuer Ordner	Exploer	Pfad Directories Dateien	Wechseln zwischen Pfad, Ordner und Datei
Datei löscher	Neuer Ordner		Neuen Ordner erstellen (identisch wie neue Datei, siehe Tabelle 2-13)
Laden 1/2	Datei löschen		Löschen der Datei
-	Load		Wiederaufrufen von Signalverläufen, Einstellungen, aufgenommene

```
Abbildung 2-85 Tabelle 2-52 Das Disk Manage Menü (Seite 2/2)
```

Disk Mana.	Menü	Einstellungen	Bemerkungen
2/2	Umbenennen		Umbenennen einer Datei (siehe Tabelle 2-52)
Ombenennen	Disk info		Anzeigen von Speichereigenschaften
Ť.			

Rename

Drücken Sie Storage	→Disk Manage.	.→Rename um	n zu folgendem N	Menü zu gelangen.
---------------------	---------------	-------------	------------------	-------------------

Abbildung 2- 86 Tabelle 2- 53 Das Rename Menü

Rename
<u> </u>
+
Ok
+

Menü	Einstellun gen	Bemerkungen	
t		Cursor nach oben bewegen	
Ŧ		Cursor nach unten bewegen	
×		Löschen des ausgewählten Buchstaben	
ОК		Umbenennen der Datei	

	†
E E NewFile_0 NewFile_1 File Name MewFile_6 RewFile_6 RewFile_6 File Vare Vare Vare Vare Vare Vare Vare Var	× Ok

Abbildung 2-87 Umbenennen der Datei

Eckpunkte:

Hersteller: Das Oszilloskop hat gespeicherte Standardeinstellungen, diese können jeder Zeit aufgerufen werden.

Speicherort: Festlegen des Speicherortes, um Signalverläufe und Einstellungen zu speichern oder wiederherzustellen.

Laden: Wiederherstellen der gespeicherten Signalverläufe, Einstellungen und Voreinstellungen.

Speichern: Speichern von Signalverläufen und Einstellungen.

Hinweis:

- 1. Die Auswahl von Speichern speichert nicht nur Signalverläufe, sondern auch aktuelle Einstellungen.
- Um sicher zu gehen dass die Einstellungen ordnungsgemäß gespeichert wurden, darf das Gerät nach dem Ändern der Einstellungen erst nach 5 Sekunden durch den Benutzer ausgeschalten werden. Das Oszilloskop kann 10 Einstellungen permanent speichern und jederzeit wiederherstellen.
Einstellen des Utility Systems

Utility zeigt die Utility-Menü Taste auf der Frontplatte.

Figure 2- 88 Taste für Utility-Einstellungen

Drücken Sie die Utility Taste um das Menü für die Einstellungen des Utility Systems zu öffnen.

```
Abbildung 2-89 Tabelle 2-54 Das Utility Menü (Seite 1/3)
```

Utilities E/A-Einst.	Menü	Einstellungen	Bemerkungen
Töne	E/A-Einst.		Einstellen der E/A Konfiguration
_{ × Zähler	Töne	∜ € (ON) ≪9×(OFF)	An-/ Ausschalten des Beepers
Aus Language Deutsch	Zähler	Aus An	AusschaltendesFrequenzzählersAnschalten des Frequenzzählers
1/3	Language	简体中文 繁体中文 English 日本語 François	Auswählen der Sprache (In späteren Firmware Versionen können weiter Sprachen hinzugefugt worden sein)

Abbildung 2- 90 Tabelle 2- 55 Das Utility Menü (Seite 2/3)

Utilities	Menü	Einstellu ngen	Bemerkungen
2∕3 Pass/Fail	Pass/Fail		Einstellungen für den Pass/Fail Test
Aufzeichn	Aufzeichn.		Einstellen der Signalaufnahme
Set kopieren	Set kopieren		Einstellen der Druckeigenschaften
2/3			

Abbildung 2-91 Tabelle 2-56 Das Utility Menü (Seite 3/3)

Utilities	Menü	Einstellung en	Bemerkungen
3∕3 Voreinstellung	Voreinstellung		Zum Menü für die Voreinstellungen
Selbstkal.	Selbstkal.		Ausführen der Selbstkalibrierung
Systeminfo	Systeminfo		Anzeigen der Systeminformationen
opecial mode	Special Mode	Lock/Unlock	Sperren der Tastatur

Hinweis:

Selbstkalibrierung: Das Oszilloskop wird die Parameter des Vertikal- (CH1, CH2, and Ext), Horizontalsystems und des Triggers kalibrieren.

I/O Einstellungen

Drücken Sie Utility → E/A-Einstel. um zu folgendem Menü zu gelangen.

			langsmena
I/O Setup	Menü	Anzeige	Bemerkungen
Baud 9600		300	Auswählen der RS-232
USB-Gerät	RS-232	•	Baud-Rate wie 300, 2400,
Computer	Baud	•	4800, 9600, 19200 oder
GPIB#		38400	38400.
. 7.	USB Gerät [1]	Computer PictBridge	Auswahl des USB-Gerätes
*	GPIB#	0-30	Auswahl der GPIB Adresse

Abbildung 2-92 Tabelle 2-57 Das E/A-Einstellungsmenü

Hinweis^[1]: Der Benutzer muss den USB-Gerät Typ manuell einstellen, wenn das Gerät am USB-Port gewechselt wird, um sicherzustellen, dass das verbundene Gerät das Gleiche ist wie in den Einstellungen.

Sprache

Das Oszilloskop hat ein mehrsprachiges Menü, wählen Sie Ihre gewünschte Sprache.

Utilities ······ STOR E/A-Einst. t) 简体中文 繁體中文 한국어 **∢**|×∶ 日本語 Zähler English. 100Vrms/div 625.0kHz/div Aus Deutsch Русский Português Español CH2~ 1.00V B Time 2.000us CH1∾ 2.00V Abbildung 2-93

Drücken Sie Utility → Language um die gewünschte Sprache auszuwählen.

Abbildung 2- 93 Das Sprachmenü

Benutzen Sie die 4. Menütaste oder den Multifunktionsknopf (igsidentified) um die gewünschte Sprache auszuwählen.

Pass/Fail

Die Pass/Fail Funktion überwacht Veränderungen durch Vergleichen des Eingabesignals mit einer vorher festgelegten Maske und gibt Pass- oder Fail Signale aus. Die Testergebnisse können nicht nur auf dem Bildschirm ausgegeben werden, sondern auch an einem isolierten Pass/Fail Anschluss. Weiter ist eine Alarmierung durch das Einschalten des Systemsounds möglich.

Drücken Sie Utility → Pass/Fail um zu folgendem Menü zu gelangen.

Pass/Fail	Menü	Einstellungen	Bemerkungen
Aug	Test	An	Einschalten des Pass/Fail Tests
Qualla	aktivieren	Aus	Ausschalten des Pass/Fail Tests
	Qualla	CH1	Auswahl Pass/ Fail Test für CH1
Anwondon	Quelle	CH2	Auswahl Pass/ Fail Test für CH2
Anwenden		▶ (START)	Pass/Fail Test gestoppt,
Msg Display	Anwondon		drücken um zu starten
Aus	Anwenden		Pass/Fail Test gestartet,
1/2		(STOP)	drücken um zu stoppen
		An	Einschalten der Pass/Fail
	Msg Display		Informationsanzeige
		Aus	Ausschalten der Pass/Fail
			Informationsanzeige

Abbildung 2- 94 Tabelle 2- 58 Das Pass/ Fail-Menü (Seite 1/2)

Pass/Fail	Menü	Einstellungen	Bemerkungen
2/2 Ausgang Fehler StopOnOutput Aus MaskSetting	Ausgang	Fehler Fehler + (11) Erfolgreich	Ausgabe, wenn Fail-Bedingung erfüllt wird. Ausgabe und Beep wenn Fail-Bedingung erfüllt wird. Ausgabe wenn Pass-Bedingung erfüllt wird.
		Erfolgreich+4	Ausgabe und Beep wenn Bedingung erfüllt wurde.
	Stop on Output	An Aus	Test stoppen wenn die Ausgabe auftritt. Test fortsetzen wenn die Ausgabe auftritt
	Mask Setting		Zum Menü für Maskeneinstellung

Hinweis^[1]: Der Beeper sollte eingeschalten sein.

Masken Setting

Mit dieser Funktion kann der Benutzer Pass/Fail-Masken erstellen, speichern, laden und importieren/exportieren.

Drücken Sie Utility → Pass/Fail → Mask Setting um zu folgendem Menü zu gelangen.

Abbildung 2-96 Tabelle 2- 60 Das Menü für Maskeneinstellungen (Seite 1/2)

Mask	Menü	Einstellungen	Bemerkungen
A Waske		*2	Auswahl des horizontalen
0.20div V Maeko	X Maske	↓	Abstands zum Signalverlauf
€ Naske			(0.04div-4.00div)
0.20div		*2	Auswahl des vertikalen
Create Mask	Y Maske		Abstands zum Signalverlauf
Location		< y uiv>	(0.04div-4.00div)
Intern	Create		Erstellen einer Testmaske
1/2	Mask		entsprechend den oben
			eingestellten Abständen
	Location	Intern	Auswahl des Speicherorts für
	LUCALION	Extern	die Maskendateien

Figure 2- 97 Table 2- 61 Das Menü für Maskeneinstellungen (Seite 2/2) Speichern auf internen Speicher

Mask	Menü	Einstellungen	Bemerkungen
	Choicharn		Speichern der erstellten
2/2	Speichern		Maske auf internem Speicher
Speichem			Wiederaufrufen der
	Laden		Maskeneinstellungsdatei von
Laden			internem Speicher
			Zum Import/Export-Menü
Imp./ Exp	Imp /Evp		(Gleich wie REF
	imp./cxp.		Importieren/Exportieren
1 L			Menü. Siehe Tabelle 2-10)

Abbildung 2- 98 Tabelle 2- 62 Das Menü für Maskeneinstellungen (Seite 2/2) Speichern auf einem externen Speicher

Mask	Menü	Einstellungen	Bemerkungen
			Zum Speichermenü
2/2	Spoicharp		(Gleich wie REF
Speichem	Speichern		Speichermenü. Siehe
			Tabelle 2-12)
Laden	Ladon		Gehe zu Lade-Menü
	Lauen		siehe Tabelle 2-63
Importieren			Zum Import Menü.
	Transutionan		(Gleich wie REF Import
1	Tuborneren		Menü. Siehe Tabelle
			2-14)

Laden

Drücken Sie Utility → Pass/Fail → Mask Setting → Laden um zu folgendem Menü zu gelangen.

Abbildung 2-99 Tabelle 2-63 Das Lade-Menü

Load	Menü	Settings	Comments
Exploer Dateien	Exploer	Pfad Directories Dateien	Wechseln zwischen Pfad, Ordner und Datei
Laden	Laden		Wiederaufrufen der ausgewählten Datei

Hinweis: Die Pass/Fail-Funktion ist nicht verfügbar im X-Y Modus.

© 2008 RIGOL Technologies, Inc.

Benutzerhandbuch für DS1000E, DS1000D Serie

Pass/Fail-Anschluss

Die Ausgabeschaltung für Pass/Fail Signale ist durch einen Optokoppler galvanisch vom Oszilloskop getrennt. Deswegen muss die Ausgangsschaltung mit einer anderen Schaltung verbunden werden um seine Aufgabe zu erfüllen.

Bevor Sie eine externe Schaltung anschließen, sorgen Sie dafür, dass die/der maximale Spannung/Strom nicht 400V/100mA überschreitet. Die Ausgabeschaltung hat keine festgelegte Polarität und kann somit willkürlich angeschlossen werden.

Record

Der Signalverlaufsrecorder nimmt Eingangssingale mit einer maximalen Länge von 1000 Bildern von den Kanälen CH1 und CH2 auf. Diese Funktion kann auch über die Pass/Fail-Testausgabe aktiviert werden, was diese Funktion sehr nützlich macht um abnormal Signalverläufe langfristig aufzunehmen, ohne den Verlauf betrachten zu müssen. Diese Funktion beinhaltet 4 Modi: OFF, Record, Playback und Speicher. Für mehr Informationen beziehen Sie sich auf folgende Einführung.

- **1. Aus:** Beendet alle Aufnahmefunktionen.
- **2. Aufzeichnen:** Aufnahme eines Signalverlaufes für ein ausgewähltes Zeitintervall bis zu letztem Bild.

Drücken Sie $Utility \rightarrow Record \rightarrow Modus \rightarrow Aufzeichnen um zu folgendem Menü zu gelangen.$

Record	Menü	Einstellungen	Bemerkungen
Modus		Aufzeichnen	Auswahl des Aufnahmemodus
Aufzeichnen		Wiedergabe	Auswahl des
Quelle	Madua	Speicherung	Wiedergabemodus
CH1	Modus		Auswahl des Speichermodus
Letztes Bild		Aus	Beenden aller
<u> </u>			Aufnahmefunktionen
Anwenden		CH1	
	Quelle	CH2	Auswahl der Aufnahmequelle
1/2		P/F-OUT	
	Latatas Bild	¢	Auswahl Anzahl der
	Leizles bilu	<1-1000>	Aufnahmebilder
			Aufnahme gestoppt, drücken
		🛡 (Start)	Sie Start um die Aufnahme zu
	Anwenden		starten
		(Stop)	Aufnahme, drücken Sie Stop
			um die Aufnahme anzuhalten

Abbildung 2-101 Tabelle 2-64 Das Aufnahmemenü (Seite 1/2)

Bemkerungen

Auswahl des Zeitintervalls

Abbildung 2- 102 Tabelle 2- 65 Das Aufnahmemenü (Seite 2/2)

Menü

Intervall

Einstellungen

Ð

<1.00ms-1000s>

3. Wiedergabe: Wiedergabe der aufgenommenen Signalverläufe.

Drücken Sie $Utility \rightarrow Record \rightarrow Modus \rightarrow Wiedergabe$ um zu folgendem Menü zu gelangen.

Abbildung 2- 103 Tabelle 2- 66 Das Aufnahmemenü (Seite 1/2)

Record	Menü	Einstellungen	Bemerkungen
Abspielen			Wiedergabe gestoppt,
Anwenden	Anwenden	(Start)	Wiedergabe zu starten
Abspielmodus		(Stop)	Bei Wiedergabe drücken
		(Sie Stopp um die
Intervall			Wiedergabe anzuhalten
Ð		c	Auswahl des
1.00ms 1/2	Absnielmodus		Wiederholmodus
-	Abspicifiodus	$ \rightarrow \blacksquare $	Auswahl der
		· -	Einzelwiedergabe
	Intervall	€) <1.00ms-20s>	Auswahl des Intervalls

-			
Record	Menü	Einstellungen	Bemerkgungen
2/2 Erstes Bild	Start Bild	v <1-1000>	Auswahl des Anfangsbildes
Aktuelles Bild	Aktuelles Bild	v <1-1000>	Auswahl des aktuellen Bildes, das wiedergegeben werden soll
Letztes Bild	Letztes Bild	v <1-1000>	Auswahl des letzten Bildes

Abbildung 2- 104 Tabelle 2- 67 Das Aufnahmemenü (Seite 2/2)

Hinweis: Die <u>RUN/STOP</u> Taste kann die Anzeige des Signalverlaufes auch wiederholen oder fortsetzen.

4. Speicherung: Speichern von aufgenommenen Signal Verläufen in einem permanenten Speicher, entsprechend eingestellter Bilder.

Drücken Sie $Utility \rightarrow Record \rightarrow Modus \rightarrow Speicherung um zu folgendem Menü zu gelangen.$

Abbildung 2-105 Tabelle 2-68 Das Speichermenü (Seite 1/2)

Record	Menü	Einstellungen	Be	emerkı	ungen	
Modus Projekorupa	Erctoc Bild	¢	Auswahl	des	ersten	zu
Eretoe Bild	Erstes Dilu	<1-1000>	speichernden Bildes			
	Letztes Bild	¢	Auswahl	des	letzten	zu
1 Letztes Bild		<1-1000>	speichernden Bildes			
ب	Location	Intern	Auguahl das Spaigharartas			
1 Location	Location	Extern	Auswann u	es spei	cherontes	
Intern						

Abbildung 2-106	Tabelle 2- 69 Das Speichermenü (Seite 2/2)
	Speichern auf internem Speicher

Record	Menü	Einstellungen	Bemerkungen
2/2 Speichem	Speichern		Speichern des aufgenommenen Signalverlaufes auf internem Speicher
Laden Imp./ Exp	Laden		Wiederaufrufen des aufgenommenen Signalverlaufes vom internen Speicher
L	Imp./Exp.		Zum Import/Export Menü (Gleich wie REF Import/ Export Menü. Siehe Tabelle 2-10)

Abbildung 2- 107 Tabelle 2- 70 Das Speichermenü (Seite 2/2) Speichern auf externem Speicher

Record	Menü	Einstellungen	Bemerkungen
			Zum Speichermenü
	Spoicharp		(Gleich wie REF
Speichem	Speichern		Speichermenü. Siehe
			Tabelle 2-12)
Laden	Ladan		Zum Laden-Menü, siehe
	Laden		Tabelle 2-63
Importieren			Zum Import-Menü.
	Importieren		(Gleich wie REF Import
			Menü, siehe Tabelle
			2-14)

Druckeinstellungen

Die DS1000E, DS1000D Oszilloskop Serie unterstützt Druckfunktionen. Bitte führen Sie die Druckoperation nach folgenden Schritten aus:

1. Verbinden des Druckers:

Die DS1000E, DS1000D Oszilloskop Serie bietet zwei Druckmodi an: "Normal" und "PictBridge".

 Sollten Sie PictBridge Drucker verwenden, wählen Sie bitte den "PictBridge" Modus aus. Nun erkennt das Oszilloskop den Drucker als "Device Equipment". Danach verbinden Sie den Drucker mit dem USB-Anschluss auf der Rückseite des Oszilloskops.

Abbildung 2- 108 PictBridge Druck

 Sollten Sie einen normalen Drucker verwenden, wählen Sie den "Normal"-Modus aus. Nun erkennt das Oszilloskop den Drucker als "Host Equipment". Danach verbinden Sie den Drucker mit dem USB-Anschluss auf der Frontplatte des Oszilloskops.

Benutzerhandbuch für DS1000E, DS1000D Serie

Normal Druck

2. Einstellen der Druckparameter:

Drücken Sie Utility → Set Kopieren um zu folgendem Menü zu gelangen.

Abbildung 2- 110 Tabelle 2- 71 Das Druckermenü ("Normal"-Modus)

Menü	Einstellun	Bemerkungen
	gen	
Druckmoduc	Normal	Auswahl des
DIUCKINOUUS	PictBridge	Druckmodus
Kopieren		Drucken
	An	Einstellen der
Invertiert	All	Farbumkehrung bei
	Aus	Druck ein oder aus
Palette	Graustufen Farbe	Auswahl der Farbpalette
	Menü Druckmodus Kopieren Invertiert Palette	MenüEinstellungenDruckmodusMormal PictBridgeKopierenInvertiertAn AusPaletteGraustufen Farbe

Abbildung 2- 111 Tabelle 2- 72 Das Druckermenü ("PictBridge"-Modus, Seite 1/3)

rint Set	Menü	Einstellun	Bemerkungen
uckmodus Volenia da		gen	
Kapiaran	Druckmodus	Normal	Auswahl des Druckmodus
Kopieren		PictBridge	
hbracha	Kopieren		Druck ausführen
encera	Abbrechen		Druck stoppen
Status	Status		Abfrage des Druckstatus

Abbildung 2-112	labelle 2-73 Das Druckmenu ("PictBridge"-Modus, Seite 2/3)

Print Set
2/3
Papiergröße
 Standard
File Type
<pre>standard</pre>
Seiten
2/3
-

Menü	Einstellungen	Bemerkungen	
Papier-	Standard	Auswahl der Papiergröße:	
größe	weiter	Standard, A2, A3, A4, A5, A6 und B5	
File Type	Standard Bmp Exif/Jpeg	Auswahl des Typs für Bildausdruck	
Seiten	€) <1-999>	Einstellen der Kopien	

Abbildung 2- 113 Tabelle 2- 74 Das Druckmenü ("PictBridge"-Modus, Seite 3/3)

Bet	Menü	Einstellung	Bemerkungen
		en	
3 Walitza		Standard	
dard.	Drint Quality	Normal	Augushi Drugkauslität
***		Entwurf	Auswahl Druckqualitat
tufen		Fein	
rtiert	Dalatta	Graustufen	Augushi Farbaalatta
n	Palelle	Farbe	Auswani Fardpaiette
	Invertient	An	Ein-/ Ausschalten der
_	Invertiert	Aus	Farbinvertierung

3. Druck:

Pri

Grau

Sorgen Sie dafür, dass der Drucker verbunden ist und die Druckereinstellungen vollständig vor dem Drucken sind. Dann, drücken Sie $\boxed{\text{Utility}} \rightarrow \text{Set kopieren} \rightarrow \text{kopieren}$ um den Druckauftrag auszuführen.

Systemeinstellungen

Drücken Sie Utility → Voreinstellungen um zu folgendem Menü zu gelangen.

Preference.	Menü	Anzeige	Bemerkungen
Screensaver Aus Expand Refer Erde Stickykey	Screen saver	1 min 5 hour Aus	Einstellen des Bildschirmschoners
Oberfläche Tradition 1/2	Expand Refer.	Erde Zentriert	Vertikale Einstellung des Signalverlaufes, Referenz erweitern
	Sticky key		Einstellen der Einfingerbedienung für CH1, CH2, Math, Ref, Trig Level und Trig Position
	Oberfläche	Klassisch Modern Tradition Knapp	Auswahl der Theme

Abbildung 2- 114 Tabelle 2- 75 Menü für die Einstellungen (1/2)

```
Abbildung 2-115 Tabelle 2-76 Menü für Einstellungen (2/2)
```

Preference.	Menü	Anzeige	Bemerkungen
2/2	Set Keys		Einstellen des Codes
Set Keys			
1			

Eckpunkte:

- **1. Bildschirmschoner:** Diese Funktion verlängert die Lebensdauer der LCD-Hintergrundbeleuchtung.
- 2. Expand reference: Bei Änderung der Volt/Div. Einstellung der Kanäle, wird der Signalverlauf im Bezug auf die Erdungsreferenz oder die Bildschirmmitte gestreckt oder gestaucht. Wurde Zentriert ausgewählt, wird der Signalverauf in Bezug auf die Bildschirmmitte gestreckt oder gestaucht. Wurde hingegen Erde ausgewählt, wird die Kanalerdungsreferenz auf der gleichen Position am Display bleiben und der Signalverlauf wird in Bezug auf die Erdungsreferenz vergrößert.
- **3. Sticky key:** Ist die Einfingerbedienung eingeschalten, wenn die Positionen (CH1, CH2, MATH, REF, Trig.Lev. and Trig.Pos.) justiert werden, stoppt das Objekt bei der Nullstellung für die einfache Rückkehr zu den ursprünglichen Positionen bis zur nächsten Justierung.
- **4. Key Sets:** Diese Funktion hilft dem Benutzer einen neuen Code für die Entriegelung der Tastatur einzugeben.

Selbstkalibierung

Die Selbstkalibierung korrigiert die internen Schaltungen um die beste Genauigkeit zu erreichen. Benutzen Sie diese Funktion für die Kalibrierung des Vertikal- und Horizontalsystems. Für gleichbleibende maximale Genauigkeit sollten Sie diese Kalibrierung benutzen. Speziell wenn sich die Umgebungstemperatur um 5°C oder mehr ändert.

Trennen Sie alle Tastköpfe oder Leitungen von allen Eingangskanälen, andernfalls können Fehler oder Schäden am Oszilloskop auftreten. Drücken Sie Utility → Selbstkal. um zu dem Selbstkalibrierungsmenü wie folgt zu gelangen. Drücken Sie die "RUN/STOP"-Taste um die Operation zu starten und "AUTO" um das Menü zu verlassen.

Abbildung 2- 116 Selbstkalibrierung

Hinweis: Das Oszilloskop muss 30 Minuten aufgewärmt worden sein, um mit der Kalibrierung die beste Genauigkeit zu erreichen.

System Information

Systeminformationen können dem Benutzer helfen um Gerätemodel, Seriennummer, Softwareversion, installierte Module und weiteres herauszufinden.

Drücken Sie Utility → Systeminfo um die Systeminformationen wie folgt aufzurufen.

Model:	DS1102E	
Serial No.	DS 1EB 104702974	
Software version:	00.02.01 SP1	
Installed module:	FFT Module installed USB Module installed P/F Module installed RS232 Module installed	
Press RUN/STOP key to exit		

Abbildung 2- 117 Systeminformationen

Special Mode

Die Oszilloskop Serie DS1000E, DS1000D bietet die neue "Key Lock"-Funktion, welche den industriellen Produktionsansprüchen entspricht. In diesem Modus werden alle Tasten gesperrt, außer die Tasten F1 bis F5 und MENU ON/OFF. Sie müssen einen Code für die Freigabe der Tastatur eingeben, das Anfangspasswort ist "111111". Darüber hinaus können Sie das Passwort mit 6 Zeichen in den Einstellungen ändern.

Für mehr Informationen beachten Sie bitte folgende Anweisungen:

1. Sperren der Tastatur

Drücken Sie die Utility Taste, dann Special Mode Menü um in den Lock Modus zu gelangen. Wählen Sie dann OK um die Sperrfunktion wie in folgender Abbildung auszuführen. In diesem Modus sind, bis auf F1 bis F5 und MENU ON/OFF, alle Tasten gesperrt. Wenn Sie Abbrechen auswählen wird die Funktion abgebrochen.

Figure 2- 118 Benutzeroberfläche für Tastatur gesperrt

2. Entsperren der Tastatur

Drücken Sie eine Taste von F1 bis F5 um in den Unlock Modus zu gelangen und geben Sie dann das Passwort zum Entsperren der Tastatur ein. (Standard "111111", Sie können ein eigenes Passwort mit 6 Bit einrichten).

Abbildung 2- 119 Benutzeroberfläche für Tastatur entsperrt

3. Ändern der Zahlenkombination

Drücken Sie die Utility Taste um in das Voreinstellungen Menü zu gelangen und wählen Sie wie in folgender Abbildung dann die set keys -Option auf der zweiten Seite des Menüs. Geben Sie die alte Zahlenkombination ein und bestätigen Sie diese mit Enter, geben Sie dann das neue Passwort ein und bestätigen Sie dieses mit der nochmaligen Eingabe. Das System wird Ihnen bestätigen dass die Passworteinstellung erfolgreich war.

Abbildung 2- 120 Benutzeroberfläche für Passworteinstellungen

© 2008 RIGOL Technologies, Inc.

Benutzerhandbuch für DS1000E, DS1000D Serie

Automatische Messungen

Die Measure Taste im Menü Bereich aktiviert die automatische Messfunktion. Die folgenden Anweisungen zeigen die leistungsstarken Messfunktionen des Oszilloskops.

Einstelltaste für automatische Messungen

Abbildungen 2-121

Einstelltaste für automatische Messungen

Menüerklärung:

Drücken Sie die Measure Taste um das Einstellmenü für die automatische Messung anzuzeigen.

Das Oszilloskop stellt 22 Automessungen bereit: Vpp, Vmax, Vmin, Vtop, Vbase, Vamp, Vavg, Vrms, Overshoot, Preshoot, Freq, Period, Rise Time, Fall Time, Delay1 $\rightarrow 2 f$, Delay1 $\rightarrow 2 f$, Phas1 $\rightarrow 2 f$,

Abbildung 2-122 Tabelle 2-77 Das Messmenü

Measure	Monii	Finstellungen	Bemerkungen
Quelle	menu	Linstenungen	Demerkungen
CH1	Qualla	CH1	Auswahl von CH1 oder CH2 als Quellkanal für die
Spannung	Quelle	CH2	Messungen
			Auswahl um
∢ Zeit	Spannung	Spannung	Spannungsparameter zu
			messen
Löschen	7oit		Auswahl um Zeitparameter zu
Alles anzeigen	Zeit		messen
Aus	Löcchen		Löschen der Messresultate
	LUSCHEIT		auf dem Bildschirm

		Ausschalten	aller
Alles	Aus	Messresultate	
anzeigen	An	Anschalten	aller
		Messresultate	

10 Spannungsmessparameter

Abbildung 2-123 Tabelle 2-78 Menü für Spannungsmessungen (Seite 1/3)

€	Menü	Einstellugen	Bemerkungen
1 July			Messen der maximalen Spannung
Vmax ± مارساسی Vmin	Vmax		eines
		Signalverlaufes	
‡ _าา_าา_	Vmin		Messen der minimalen Spannung
Vpp 1 ລັບລັບ Vtop		eines Signalverlaufes	
	Vpp		Messen der Spitze-Tal Spannung
) (have		Messen der positiven, abgeflachten
	νιορ		Spitzen eines Signalverlaufes

Abbildung 2-124 Tabelle 2-79 Menü für Spannungsmessungen (Seite 2/3)

₩. mm		Menü	Einstellungen	Bemerkungen
± Vbase		Vhaca		Messen der negativen, abgeflachten
‡_J1_J1_	‡_M_M_	vbase		Spitzen eines Signalverlaufes
Vamp		Vamn		Messen der Spannung zwischen Vtop
t the state		vamp		und Vbase
Vavg	vg		Durchschnittsspannungsmessung	
1/00	vavg		eines Signalverlaufes	
-			Messen der Effektivwertspannung	
		vrins		eines Signalverlaufes

Abbildung 2-125 Tabelle 2-80 Menü für Spannungsmessungen (Seite 3/3)

₩ , *	Menü	Einstellungen	Bemerkungen
t ^{yngrig}	Übersebwing		Messen der Übersteuerung in
the stand	Oberschwing		Prozent einer Flanke
Vrms	Unterstouern		Messen der Untersteuern in
÷ <u></u> fe	Untersteuern		Prozent einer Flanke
Überschwing		-	© 2008 RIGOL Technologies, Inc.
Untersteuern	Benutzerhandbuc	ch für DS1000E, DS10	00D Serie

10 Zeitmessparameter

ਦੇ ਦੋਹੋਹ	Menü	Einstellungen	Bemerkungen
	Periode		Messen der Periode eines
,7 F			Signalverlaufes
Frequenz	Froquenz		Messen der Frequenz eines
Anstiegszei Abfallzeit	Frequenz		Signalverlaufes
	Anstiegszeit		Messen der Anstiegszeit einer
			steigenden Flanke
	Abfallasit		Messen der Abfallzeit einer
	Abralizeit		fallenden Flanke

Abbildung 2-126 Tabelle 2-81 Menü für die Zeitmessungen (Seite 1/4)

Abbildung 2- 127 Tabelle 2- 82 Menü für die Zeitmessungen (Seite 2/4)

₩ -	Menü	Einstellungen	Bemerkungen
╶╧╤╧──	, Proito		Messen der +Pulsdauer einer
+Breite	+ breite		Impulsfolge
-Breite	-Breite -Freite +Duty -Futy -Futy -Futy		Messen der –Pulsdauer einer
			Impulsfolge
+ Duty			Messen des +Tastgrades einer
┺╪┸			Impulsfolge
- Duty			Messen des –Tastgrades einer
			Impulsfolge

Abbildung 2- 128 Tabelle 2- 83 Menü für die Zeitmessung (Seite 3/4)

₩	Menü	Einstellungen	Bemerkungen
-∓_∓⊐ + Dutv			Messen der
	$Dolov1 \rightarrow 2$		Signalverzögerung zwischen
- Duty	Delay1→2∓		zwei Kanälen bei steigender
			Flanke
Delay1→2 }			Messen der
Delay1→2₹	Delay1→2 1		Signalverzögerung zwischen
			zwei Kanälen bei fallender
			Flanke

♦	Menü	Einstellun gen	Bemerkungen
Delay1→2 f			Messen des
	Dhac1→24		Phasenverschiebungswinkels
	Phas1→2∓		zwischen zwei Kanälen bei
 Phas1→2 f			steigender Flanke
			Messen des
Phas 1→2]			Phasenverschiebungswinkels
	PlidS1-72 L		zwischen zwei Kanälen bei
			fallender Flanke

Abbildung 2- 129 Tabelle 2- 84 Menü für die Zeitmessung (Seite 4/4)

Hinweis: Die Ergebnisse der Automatik-Messungen werden am unteren Bildschirmrand angezeigt. Es können maximal 3 Werte gleichzeitig Zeit angezeigt werden. Ist kein Platz mehr auf dem Bildschirm, schieben die neuen Messwerte die Alten links aus dem Bildschirm.

Benutzen der Automatik-Messungen:

1. Wählen Sie den Eingangssignal für die Messung. CH1 oder CH2 entsprechend des gewünschten Signales.

Drücken Sie die Softkeys wie folgt: Measure \rightarrow Quelle \rightarrow CH1 oder CH2.

- Um alle Messwerte zu sehen, wählen Sie für Display All → ON. 18 Messwertparameter werden auf dem Bildschirm angezeigt (außer für "Delay1 →2f" und "Delay1→2f").
- Wählen Sie die Parameterseite f
 ür Messungen; Wählen Sie die Spannungs- oder Zeit Parameterseite mit dem Dr
 ücken des Softkeys wie folgt: Measure → Spannung oder time → Vmax, Vmin......
- 4. Um das Messergebnis auf dem Bildschirm anzuzeigen; wählen Sie die gewünschten Parameter mit dem Drücken der Softkeys auf der rechten Menüseite, dann werden die Messwerte am unteren Bildschirmrand angezeigt.

Wird für die Messwerte "****" angezeigt, bedeutet das, dass die Parameter im aktuellen Zustand nicht gemessen werden können.

5. Löschen der Messwerte: Drücken Sie Löschen und alle Automatik Messwerte verschwinden vom Bildschirm (außer für "Display all" Parameter).

Abbildung 2- 130 Messwerteinstellungen

Automatische Messung von Spannungsparametern

Ihr Oszilloskop bietet automatische Spannungsmessungen welche Vpp, Vmax, Vmin, Vavg, Vamp, Vrms, Vtop, Vbase, Überschwingen und Untersteuern beinhalten. Die folgende Abbildung zeigt einen Puls mit einigen Spannungsmesspunkten.

Abbildung 2-131

© 2008 RIGOL Technologies, Inc.

Benutzerhandbuch für DS1000E, DS1000D Serie

Spannungsparameter

Vpp: Spitze-Tal Spannung.

Vmax: Die positive Amplitude. Die größte gemessene Spitze Spannung über den ganzen Signalverlauf.

Vmin: Die negative Amplitude. Die größte gemessene Talspannung über den ganzen Signalverlauf.

Vamp: Spannung zwischen Vtop und Vbase des Signalverlaufs.

Vtop: Spannung der positiven, abgeflachten Spitzen eines Signalverlaufs, nützlich für Rechteck- und Pulsschwingungen.

Vbase: Spannung der negativen, abgeflachten Spitzen eines Signalverlaufs, nützlich für Rechteck- und Pulsschwingungen.

Überschwing: Definiert als (Vmax-Vtop)/Vamp, nützlich für Rechteck- und Pulsschwingungen.

Untersteuern: Definiert als (Vmin-Vbase)/Vamp, nützlich für Rechteck- und Pulsschwingungen.

Mittelwert: Arithmetisches Mittel über den ganzen Signalverlauf.

Vrms: Der Effektivwert über den ganzen Signalverlauf.

Die Automatik Messung von Zeitparametern

Ihr Oszilloskop bietet automatische Zeitmessungen, welche Frequenz, Periode, Anstiegszeit, Abfallzeit, +Breite, -Breite, Delay $1 \rightarrow 2 \texttt{f}$, Delay $1 \rightarrow 2 \texttt{t}$, Phas $1 \rightarrow 2 \texttt{t}$, Phas $1 \rightarrow 2 \texttt{t}$, +Duty und –Duty beinhalten. Die folgende Abbildung zeigt einen Pulsverlauf mit einigen Zeitmesspunkten.

Abbildung 2- 132 Zeitmesspunkte

Anstiegszeit: Benötigte Zeit der ansteigenden Flanke des ersten Pulses eines Signalverlaufes um von 10% auf 90% der Amplitude zu steigen.

Abfallzeit: Benötigte Zeit der fallenden Flanke des ersten Pulses eines Signalverlaufes um von 90% auf 10% der Amplitude zu fallen.

+Breite: Pulsdauer des ersten, positiven Pulses bei 50% Punkt der Amplitude.

-Breite: Pulsdauer des ersten, negativen Pulses bei 50% Punkt der Amplitude.

Delay 1→2*f***:** Die Signalverzögerung zwischen den zwei Kanälen bei steigender Flanke.

Delay $1 \rightarrow 2^{+}$: Die Signalverzögerung zwischen den zwei Kanälen bei fallender Flanke.

Phas $1 \rightarrow 2f$ **:** Der Phasenverschiebungswinkel zwischen den zwei Kanälen bei steigender Flanke.

Phas $1 \rightarrow 2$ ⁺: Der Phasenverschiebungswinkel zwischen den zwei Kanälen bei steigender Flanke.

+Duty: +Tastgrad, definiert als +Pulslänge/ Periode.

-Duty: -Tastgrad, definiert als -Pulslänge/ Periode.

Messungen mit Cursor

Die Abbildung zeigt die Cursor Taste auf der Forntabdeckung.

Abbildung

Cursor Taste für Messeinstellungen

Die Cursormessungen haben 3 Modi: Manuell, Track und Auto Measure.

1. Manuell Modus:

Bei diesem Modus, werden 2 parallele Cursoren angezeigt. Bewegen Sie die Cursoren um individuelle Spannungs- oder Zeitmessungen eines Signalverlaufes zu machen. Die Messwerte werden im Kästchen unter dem Menü angezeigt. Bevor Sie die Cursoren benutzen, sorgen Sie dafür dass die Signalquelle für den zu messenden Kanal eingestellt ist.

2. Spur Modus:

Bei diesem Modus werden zwei Fadenkreuzcursoren angezeigt. Der Cursor wählt automatisch die Position auf dem Signalverlauf. Stellen Sie die horizontale Position mit dem Drehen des Multifunktionsknopfes(♥) auf dem Signalverlauf ein. Das Oszilloskop zeigt nun die Werte der Koordinaten im untern Kästchen, unterhalb dem Menü an.

© 2008 RIGOL Technologies, Inc.

2-106

3. Auto Modus:

Dieser Modus wird wirksam mit den Automatik Messungen. Das Instrument zeigt während der automatischen Parametermessung die Cursoren an. Diese Cursoren zeigen die elektrische Bedeutung dieser Messungen.

Hinweis: Der automatische Messmodus für Cursoren wird nicht wirksam ohne automatische Messungen.

Manuell Modus

Drücken Sie Cursor → Modus → Manuell um das Manuell Modus-Menü anzuzeigen.

Cursors	Menü	Einstellungen	Bemerkungen
Modus	Madua	Manuell	Einstellen des Cursor für manuelle
< Manuell	Modus		X/Y Parametermessung
Тур			Wird als vertikale Linie für die
<u> </u>	Typ Quelle	х	Messung horizontaler Parameter
			angezeigt
		Y	Wird als horizontale Linie für die
CurA			Messung vertikaler Parameter
			angezeigt
		CH1	
		CH2	Wählen Sie die Messsignalquelle
		MATH	(LA nur für DS1000D Serie)
		LA	

Abbildung 2-134 Tabelle 2-85 Das Manuellmodusmenü

In diesem Modus misst das Oszilloskop die Y oder X Koordinaten der Cursoren, und die Inkremente zwischen den beiden Cursoren.

Ist der Cursor auf Type X gestellt, erscheint ein Paar vertikaler Cursoren, CurA und CurB, auf dem Bildschirm. Deren Zeitwert kann separat gemessen werden, sowie die Zeitdifferenz zwischen ihnen. Diese kann mit der Lage des Cursors durch Drehen des Multifunktionsknopfes (\checkmark) geändert werden.

Abbildung 2- 135 Manueller Messmodus für Cursormessungen

Ist der Cursor auf Type Y, erscheint ein Paar horizontaler Cursoren -CurA und CurBauf dem Bildschirm. Deren Spannungswert kann separat gemessen werden, sowie die Zeitdifferenz zwischen ihnen. Diese kann mit der Lage des Cursors durch Drehen des Multifunktionsknopfes (\checkmark) geändert werden.

Um manuelle Cursormessungen auszuführen, folgen Sie bitte folgenden Schritten:

- Wählen Sie den Manuell Modus f
 ür Cursormessungen mit dem Dr
 ücken der folgenden Softkeys:
 Cursor→Modus→Manuell.
- Wählen Sie den Quellkanal Source für Messungen mit dem Drücken der folgenden Softkeys:
 Cursor → Quelle → CH1, CH2, MATH (FFT) oder LA (DS1000D Serie)

Hinweis: Während der Messungen von MATH als Kanalquelle, werden die Werte mit "d" (division) als Maßeinheit angezeigt.

- 3. Wählen Sie den Cursortyp mit Drücken der Softkeys wie folgt: Cursor→Typ→X oder Y.
- 4. Bewegen Sie den Cursor um die Inkremente zwischen den Cursoren einzustellen: (Einzelheiten in der folgenden Tabelle)

2-108

Tabelle 2-86 Das Cursormenü

Cursor	Inkrement	Operation
Cursor A	v	Drehen Sie den Multifunktionsknopf (🍤) um
	^	den Cursor A horizontal zu bewegen
	V	Drehen Sie den Multifunktionsknopf (🝤) um
	T	den Cursor A vertikal zu bewegen
Cursor B	V	Drehen Sie den Multifunktionsknopf (🝤) um
	~	den Cursor B horizontal zu bewegen
	V	Drehen Sie den Multifunktionsknopf ($oldsymbol{arphi}$)
	Y	um den Cursor vertikal zu bewegen

Hinweis: Der Cursor kann nur bewegt werden, wenn die Cursormenüfunktion angezeigt wird.

5. Erhalten der Messwerte:

Position des Cursor A (Zeitcursor zentriert im Mittelpunkt des Bildschirmes; Spannungscursor zentriert an der Erdungsreferenz).

Position des Cursor B (gleich wie oben).

Horizontaler Abstand zwischen Cursor A und B ($\triangle X$): Zeit zwischen den Cursoren (1/ $\triangle X$), Einheiten in Hz, kHz, MHz, GHz.

Vertikaler Abstand zwischen Cursor A und B (${}_{\triangle}$ Y): Spannung zwischen den Cursoren.

Sollten Sie LA als Quelle benutzen (DS1000 Serie), sind die Messwerte wie folgt: Position des Cursor A (Zeitcursor zentriert im Mittelpunkt des Bildschirmes). Position des Cursor B (Zeitcursor zentriert im Mittelpunkt des Bildschirmes). Cursor A Wert: Hexadezimal Cursor A Wert: Binär Cursor B Wert: Hexadezimal Cursor B Wert: Binär

Hinweis: Die Werte werden automatisch in der oberen Ecke des Bildschirmes angezeigt wenn das Cursorfunktionsmenü andere Menüs anzeigt oder verdeckt werden.

Eckpunkte

Cursor Y: Cursor Y erscheint als horizontale Linie auf dem Bildschirm, für die Messung vertikaler Parameter. Meist wird dieser für die Messung von Spannungen verwendet. Ist die Quelle als Funktion eingestellt, werden die Einheiten der Funktion zugewiesen.

Cursor X: Cursor X erscheint als vertikale Line auf dem Bildschirm, für die Messung horizontaler Parameter. Meist Anzeige der Auslösezeit des Triggers. Wenn die Quelle als FFT ausgewählt wurde, bedeutet X Frequenz.

Spurmodus

Drücken Sie Cursor → Modus → Spur um das Trackmodusmenü anzuzeigen.

Cursors Modus	Menü	Einstellu ngen	Bemerkungen
Spur CursorA CH1 CursorB CH1	Modus	Track	Setzt Trackmodus für Cursormessung
	Cursor A	CH1 CH2 None	Auswahl Cursor A in Verbindung mit CH1, CH2 oder ausschalten des Cursor A
SurA SurB	Cursor B	CH1 CH2 None	Auswahl Cursor B in Verbindung mit CH1, CH2 oder ausschalten des Cursor B
Ð	CursA (Cursor A)	Ð	DrehenSiedenMultifunktionsknopf(*) umdenCursor A horizontal zu bewegen
	CurB (Cursor B)	Ð	DrehenSiedenMultifunktionsknopf(*) umdenCursor B horizontal zu bewegen

Abbildung 2-136 Tabelle 2-87 Trackmenü

Im Track Modus bei einer Messung wird der Fadenkreuzcursor auf dem Signalverlauf angezeigt. Bewegen Sie den Cursor horizontal, werden die aktuellen horizontalen und vertikalen Positionen sofort angezeigt, ebenso wie die Inkremente Beider. Hinweis: horizontale Koordinaten repräsentieren die Zeitwerte, vertikale Koordinaten repräsentieren die Spannungswerte.

Abbildung 2- 137 Trackmessmodus für Cursormessungen

Um Trackcursormessungen durchzuführen, folgen Sie diesen Schritten:

1. Wählen Sie Spur Modus für Cursormessungen durch Drücken des Softkeys wie folgt:

Cursor→Modus→Spur.

2. Wählen Sie Kanal Quelle für Cursor A und Cursor B durch Drücken der folgenden Softkeys:

Cursor \rightarrow Cursor A oder Cursor B \rightarrow CH1, CH2 oder Nichts.

3. Bewegen Sie den Cursor um die horizontale Position des Cursors einzustellen: (Details in der folgenden Tabelle)

Tabelle 2-88 Cursorverwendung

Cursor	Operation			
Cursor A	Drehen des Multifunktionsknopfes (🍤 um den Cursor A horizontal			
	zu bewegen			
Cursor B	Drehen des Multifunktionsknopfes (🍤) um den Cursor B horizontal			
	zu bewegen			

Hinweis: Horizontales Bewegen des Cursors ist außerhalb des Trackingmodus nicht unterstützt.

2-112
4. Erhalten der Messwerte:

Position des Cursor 1 (Zeitcursor zentriert im Mittelpunkt des Bildschirmes; Spannungscursor zentriert an der Erdungsreferenz).

Position des Cursor 2 (Zeitcursor zentriert im Mittelpunkt des Bildschirmes; Spannungscursor zentriert an der Erdungsreferenz).

Horizontaler Abstand zwischen Cursor 1 und Cursor 2 (ΔX): Zeit zwischen den Cursoren, Einheit in Sekunden.

 $(1/\Delta X)$, Einheit in Hz, kHz, MHz, GHz.

Vertikaler Abstand zwischen Cursor 1 und Cursor 2 (△Y): Spannung zwischen den Cursoren, Einheit in V.

Auto Mode

Drücken Sie Cursor → Modus → Auto um das Automode-Menü anzuzeigen.

Abbildung 2-138 Tabelle 2-89 Das Automode-Menü

Cursors Mode	Menü	Einstellu ngen		Beme	rkungen		
			Anzeigen	des	Cursors	für	die
	Mode	Auto	aktuelle	auton	natische	Mess	sung
			(siehe folg	gende .	Abbildung)	

Es wird kein Cursor angezeigt, wenn keine Parameter im Messmenü ausgewählt wurden. Das Oszilloskop kann für die automatische Messung von 22 Parametern im Measure Menü automatisch den Cursor bewegen.

Abbildung 2- 139 Automessmodus für Cursormessungen

Benutzen der Erfassungskontrolle

Die Erfassungskontrolle beinhaltet AUTO (Auto Einstellung) und RUN/STOP.

Auto:

Die AUTO Funktion verfügt über eine automatische Einstellung, um eine verwendbare Anzeige des Eingangssignals zu produzieren. Drücken Sie die AUTO Taste, das folgende Menü erscheint.

Abbildung 2- 140 Tabelle 2- 90 Das Auto Menü

	Menü	Einstellungen	Bemerkungen			
Single Cycle	JIIII Multi- Cycle		Wählen Sie, um den Multi-Cycle Signalverlauf auf dem Bildschirm anzuzeigen			
Rise Edge	Single Cycle		Wählen Sie, um den Single Cycle Signalverlauf auf dem Bildschirm anzuzeigen			
	 Rise Edge		Wählen Sie, um die steigende Flanke des Signalverlaufes anzuzeigen und automatische Messung der Anstiegszeit			
	Fall Edge		Wählen Sie, um die fallende Flanke des Signalverlaufes anzuzeigen und automatische Messung der Abfallzeit			
	(Cancel)		Wählen Sie, um alle AutoSet Aktionen abzubrechen.Das Oszilloskop wird denvorherigenZustandwiederherstellen.			

Auto-set Funktionen

Nach dem AUTO gedrückt wurde, ist das Oszilloskop mit den folgenden Voreinstellungen konfiguriert:

Tabelle 2- 91 Das Auto Menü

Menü	Einstellungen			
Anzeigeformat	Y-T			
Erfassungsmodus	Normal			
Vortikalkonnlung	Einstellen um AC oder DC, entsprechend des			
vertikaikoppiulig	Signals.			
Vertikalposition	Einstellen für richtige Position			
Vertikal "V/div"	Einstellen für richtige Skalierung			
Volt/Div	Grob			
Bandbreitenlimit	Voll			
Signalinvertierung	Aus			
Horizontalposition	Zentrum			
Horizontal "S/div"	Einstellen für richtige Skalierung			
Trigger Typ	Flanke			
	Findet den Kanal mit Eingangssignal			
Ingger Quelle	automatisch.			
Trigger Kopplung	DC			
Trigger Spannung	Mitteleinstellung			
Trigger Modus	Auto			

RUN/STOP: Starten oder Stoppen der Signalverlaufserfassung

Hinweis: Die Volt/Div und horizontale Zeitbasis kann in einem fixierten Bereich eingestellt werden. Das heißt, heran- oder herauszoomen im Signalverlauf in vertikaler und horizontalen Richtung.

Kapitel 3 Anwendung & Beispiele

Beispiel 1: Einfache Messungen

Diese Funktion wird benutzt um unbekannte Signalverläufe zu beobachten; Anzeigen, Messen der Frequenz und Spitze-Tal Amplitude.

Für eine schnelle Signalanzeige, folgen Sie diesen Schritten:

- 1. Setzen Sie die Tastkopf- und Kanalkompensation auf 10X
- 2. Verbinden Sie das Signal mit dem Tastkopf an CH1
- 3. Drücken Sie die AUTO Taste

Das Oszilloskop wählt die besten vertikalen, horizontalen und Trigger Einstellungen automatisch. Für die Optimierung der Anzeige, passen Sie manuell diese Bedienelemente an.

Auswählen der Automatik Messungen

Das Oszilloskop nimmt bei vielen Signalverläufen automatisch Messungen auf. Um Die Frequenz und Spitze-Tal Amplitude zu messen, folgen Sie diesen Schritten:

1. Messen der Spitze-Tal Amplitude

Drücken Sie Measure \rightarrow Quelle \rightarrow CH1 für die Auswahl der Messquelle Drücken Sie Spannung \rightarrow Vpp für die Auswahl der Spitze-Tal-Messung und das Messergebnis wird auf dem Bildschirm angezeigt.

2. Messen der Frequenz

Drücken Sie Measure \rightarrow Spannung \rightarrow CH1 für die Auswahl der Messquelle Drücken Sie Zeit \rightarrow Frequenz für die Auswahl der Frequenzmessung und das Messergebnis wird auf dem Bildschirm angezeigt.

Hinweis: Die Frequenz- und Spitze-Tal-Messungen werden auf dem Bildschirm angezeigt und periodisch aktualisiert.

Beispiel 2: Anzeigen einer Signalverzögerung,

hervorgerufen durch eine Schaltung

Dieses Beispiel testet die Eingangs- und Ausgangssignale einer Schaltung und beobachtet die Signalverzögerung. Setzen Sie als erstes die Tastkopf- und Kanalkompensation auf 10X und verbinden Sie den CH1 Tastkopf mit dem Eingangssignal, CH2 mit dem Ausgangssignal der Schaltung.

Führen Sie folgende Schritte aus:

- 1. Anzeigen der Signale (CH1 und CH2):
- (1) Drücken Sie die AUTO Taste
- (3) Drücken Sie die CH1 Taste um Kanal 1 auszuwählen, und drehen Sie den vertikalen OPOSITION Knopf um die vertikale Position des Kanals 1 anzupassen.
- (4) Drücken Sie die <u>CH2</u> Taste um Kanal 2 auszuwählen, und drehen Sie den vertikalen <u>POSITION</u> Knopf um die vertikale Position des Kanals 2 anzupassen.
- 2. Messen der Zeitverzögerung, bei Beeinflussung durch eine Schaltung. Automatik Messung der Verzögerung:
- (1) Drücken Sie Measure \rightarrow Quelle \rightarrow CH1 für die Auswahl der Messquelle.
- (2) Drücken Sie Zeit für die Auswahl der Messart.
- (3) Wählen Sie Delay 1→2^f für die Anzeige des Messwertes auf dem Bildschirm.
 Sie können die Änderung des Signalverlaufes in folgender Abbildung sehen:

Abbildung 3- 1 Signalverzerrung

Beispiel 3: Erfassen einer Einzelsignalauslösung

Für die Erfassung von einer Einzelauslösung, benötigt es Vorwissen über das Signal um das Trigger Level und Anstieg richtig einzustellen. Zum Beispiel wenn ein Ereignis von der Transistor-Transistor-Logik abgeleitet ist, sollte eine Triggerleveleinstellung von 2 Volt auf die steigende Flanken funktionieren.

Folgende Schritte zeigen, wie man das Oszilloskop für eine Erfassung einer Einzelauflösung benutzt.

- 1. Setzen Sie die Tastkopf- und Kanalkompensation auf 10X.
- 2. Einstellen des Triggers.
- (1) Drücken Sie die MENU Taste im Trigger Kontrollbereich um das Menü zu öffnen.
- (2) Drücken Sie Flanke für die Auswahl des Trigger Modus
- (3) Drücken Sie Anstieg um 🕈 auszuwählen
- (4) Drücken Sie Quelle um CH1 auszuwählen
- (5) Drücken Sie Zeitablenkung und wählen Sie Einmalig
- (6) Drücken Sie Set Up→Kopplung und wählen Sie DC
- 3. Drehen Sie den vertikal und horizontal OSCALE Kopf um die Volt/Div und die Zeitbasis für das Signal entsprechend einzustellen.
- 4. Drehen Sie den OLEVEL Knopf um den Trigger Level einzustellen.

© 2008 RIGOL Technologies, Inc. Benutzerhandbuch für DS1000E, DS1000D Serie

5. Drücken Sie die <u>RUN/STOP</u> Taste um die Erfassung zu starten. Werden die Trigger Bedingungen erfüllt, werden Daten auf dem Bildschirm angezeigt, welche das Oszilloskop in einer Erfassung erhalten hat.

Diese Funktion hilft bei dem einfachen Erfassen von Ereignissen, wie das Rauschen mit großer Amplitude. Wählen Sie den Trigger Level über dem des normalen Levels und drücken Sie RUN/STOF, warten Sie danach. Wenn Rauschen auftritt, nimmt das Instrument den Signalverlauf vor und nach dem Trigger auf. Durch Betätigen des OSITION Knopfes im horizontal Kontrollbereich und ändern des Levels für die Trigger Position, wird die Trigger Verzögerung invertiert. Dies ist hilfreich für das beobachten von Signalverläufen vor dem Auftreten von Rauschen.

Beispiel 4: Reduzierung von weißem Rauschen bei Signalen

Wenn das Signal verrauscht ist (Abbildung 3- 2), stellen Sie das Oszilloskop auf die Reduzierung von Rauschen für den Signalverlauf, um die Beeinflussung des Signals zu verhindern.

Abbildung 3- 2 Signal mit Rauschen

- 1. Setzen Sie die Tastkopf- und Kanalkompensation auf 10X.
- Verbinden Sie das Signal mit dem Oszilloskop und erzielen Sie eine stabile
 3-4 © 2008 RIGOL Technologies, Inc.

Benutzerhandbuch für DS1000E, DS1000D Serie

Anzeige.

- 3. Verbessern Sie den Trigger mit setzen der Kopplung.
- (1) Drücken Sie MENU im Trigger Kontrollbereich.
- (2) Drücken Sie Set Cur→Kopplung→LF verwerfen oder HF verwerfen

HF verwerfen (Hochfrequenzunterdrückung) fügt einen Tiefpassfilter mit -3dB Abschnittspunkt bei 150 kHz hinzu. Benutzen Sie die HF Unterdrückung um hochfrequentes Rauschen, wie AM oder FM Signale, vom Trigger Pfad zu entfernen.

LF verwerfen (Niederfrequenzunterdrückung) fügt einen Hochpassfilter mit -3dB Abschnittspunkt bei 8kHz hinzu. Benutzen Sie die LF Unterdrückung um niederfrequente Signale, wie Rauschen durch Netzleitungen, vom Trigger Pfad zu entfernen.

- 4. Reduzieren des Rauschens mit dem Einstellen des Erfassungstyp und der Signalverlaufsintensität.
- (1) Sollte Rauschen im Signal und der Signalverlauf zu breit erscheinen, wählen Sie in diesem Fall die Durchschnittserfassung. In diesem Modus ist der Signalverlauf dünn, einfach zu betrachten und zu messen.

Um die Druchschnittserfassung auszuwählen, folgen Sie diesen Schritten:

- Drücken Sie die Softkeys wie folgt Acquire → Erfassung → Mittelwert
- Wählen Sie die Anzahl der Durchschnitte mit dem Drücken des Mittelwerte Softkey, welcher am besten das Rauschen von dem angezeigten Signalverlauf eliminiert. Der Durchschnitt kann von 2 bis 256 eingestellt werden. (Siehe Abbildung 3-3)

Abbildung 3- 3 Signal ohne Rauschen

(2) Die Reduzierung des Rauschens kann auch durch die Reduzierung der Intensität des Displays erreicht werden.

Hinweis: Es ist normal, dass die Wiederholfrequenz abnimmt, wenn die Durchschnittserfassung eingeschalten ist.

Beispiel 5: Cursormessung

Das Oszilloskop stellt 22 automatische Messungen zur Verfügung. Diese können auch verwendet werden, um mit den Cursoren Zeit und Spannung eines Signalverlaufes schnell zu messen.

Messen der Spitzenfrequenz des ersten Sinc-Signalverlaufes

Zum Messen der Überschwingfrequenz der steigenden Flanke eines Signales, folgen Sie diesen Schritten:

- 1. Drücken Sie die Cursor Taste um das Cursormenü zu öffnen.
- 2. Drücken Sie Modus um den Manuell Modus einzuschalten.
- 3. Drücken Sie Typ um X auszuwählen.
- 4. Drehen Sie den Multifunktionsknopf (\checkmark) um den Cursor A auf der ersten Spitze des Signalverlaufes zu platzieren.

3-6

5. Drehen Sie den Multifunktionsknopf (\bigstar) um den Cursor B auf der zweiten Spitze des Signalverlaufes zu platzieren.

Beobachten Sie die Werte, angezeigt auf dem Bildschirm, für Delta in Zeit und Frequenz.

Abbildung 3- 4 Anzeige Signalverlauf

Messen der Amplitude der ersten Spannungsspitze eines Sinc.

Bitte folgen Sie diesen Schritten:

- 1. Drücken Sie die Cursor Taste um das Cursormenü zu öffnen.
- 2. Drücken Sie Modus um den manuellen Modus einzuschalten.
- 3. Drücken Sie Typ um Y auszuwählen.
- 4. Drehen Sie den Multifunktionsknopf (\checkmark) um den Cursor A auf der ersten Spitze des Signalverlaufes zu platzieren.

5. Drehen Sie den Multifunktionsknopf (\checkmark) um den Cursor B auf der ersten Spitze des Signalverlaufs zu platzieren.

Beobachten Sie folgende Messungen im Cursormenü: (Siehe Abbildung 3-5)

- Spannungsdelta (Spitze-Tal Spannung des Signalverlaufes)
- Spannung für Cursor A
- Spannung für Cursor B

Abbildung 3- 5 Signalanzeige

Beispiel 6: Anwendung der X-Y Operation

Anzeigen der Phasenverschiebung durch ein Netzwerk

Thema: Verbinden des Oszilloskops um den Eingang und Ausgang einer Schaltung anzuzeigen und zum Erfassen der Phasenverschiebung.

Um den Eingang und Ausgang einer Schaltung im X-Y Modus anzuzeigen führen Sie folgende Schritte aus:

- 1. Im Tastkopfmenü stellen Sie die Kompensation auf 10X. Schalten Sie am Tastkopf ebenfalls die Kompensation auf 10X.
- 2. Verbinden Sie den CH1 mit dem Eingang des Netzwerkes, und den CH2 mit dem Tastkopf am Ausgang.
- 3. Sollten die Kanäle nicht angezeigt werden, drücken Sie die CH1 und CH2 Tasten.
- 4. Drücken Sie die AUTO Taste.
- 5. Drehen Sie den vertikal ^{©SCALE} Knopf um ungefähr die gleichen Amplitudensignale beider Kanäle zu erreichen.

© 2008 RIGOL Technologies, Inc.

3-8

- 6. Drücken Sie die MENU Taste im Horizontaleinstellbereich um das Menü anzuzeigen.
- 7. Drücken Sie den Zeitbasis Softkey für die Auswahl von X-Y.

Das Oszilloskop zeigt eine Lissajous Kurve welche die Eingangs- und Ausgangscharakteristik der Schaltung repräsentiert.

- 8. Drehen Sie die vertikal [©]SCALE und [©]POSITION Knöpfe, um den erwünschte Signalverlauf anzuzeigen.
- 9. Wenden Sie die Ellipsenmethode an, um die Phasenverschiebung der beiden Kanäle zu beobachten.

(See Figure 3-6)

Abbildung 3- 6 Ellipsenmethode für das Beobachten der Phasenverschiebung

Sin θ = **A**/**B** oder C/D, wenn θ = Phasenverschiebungswinkel (in Grad) zwischen den zwei Signalen.

Durch umformen der Formel oben, erhält man:

$\theta = \pm arcsine (A/B) or \pm arcsine (C/D)$

Wenn sich die Hauptachse der Ellipse im I. und III. Quadranten befinden, liegt θ in dem Bereich von (0~ π /2) oder (3 π /2~2 π). Liegt die Hauptachse hingegen im II. und IV. Quadranten, liegt θ in dem Bereich von (π /2~ π) oder (π ~3 π /2).

Beispiel 7: Triggerung auf ein Videosignal

Prüfen der Videoschaltung in einem DVD Gerät. Benutzen Sie den Videotrigger um ein stabiles Bild zu erhalten.

Triggerung auf Video Felder

Um auf Video Felder zu Triggern, folgen Sie diesen Schritten:

- 1. Drücken Sie die MENU Taste im Triggereinstellbereich um das Trigger Menü zu öffnen.
- 2. Drücken Sie Modus um den Video Modus auszuwählen.
- 3. Drücken Sie Quelle um CH1 als Trigger Quelle auszuwählen.
- 4. Drücken Sie Polarität um \amalg auszuwählen.
- 5. Drücken Sie Sync als Ungerades Feld oder Gerades Feld.
- 6. Drehen Sie den <u>OLEVEL</u> Knopf um das Trigger Level bei Video Sync Puls zu setzen, um einen stabilen Trigger zu erreichen.
- 7. Drehen Sie den horizontal ^{©SCALE} Knopf um den kompletten Signalverlauf auf dem Bildschirm zu sehen.

Abbildung 3-7 Anzeige des Signalverlaufes

Das Oszilloskop triggert auf ungerade oder gerade Felder. Um eine Verwechslung bei

gleichzeitiger Triggerung auf ungerade und gerade Felder auszuschließen, wählen Sie ungerades Feld oder gerades Feld wie im oberen Schritt 5.

Triggerung auf Video Linien

- 1. Drücken Sie die MENU Taste im Trigger Kontrollbereich um das Trigger Menü zu öffnen.
- 2. Drücken Sie Modus um Video auszuwählen.
- 3. Drücken Sie Quelle um CH1 als Trigger Quelle auszuwählen.
- 4. Drücken Sie Polarität um 🚺 Auszuwählen.
- 5. Drücken Sie Sync um Leitungsnummer auszuwählen.
- 6. Drehen Sie den Multifunktionsknopf (♥) um auf eine bestimmte Liniennummer zu Triggern.
- 7. Drehen Sie den <u>CLEVEL</u> Knopf um das Trigger Level des Video Sync Pulses einzustellen, dadurch erreichen Sie einen stabilen Trigger.
- 8. Drehen Sie den horizontal SCALE Knopf um den vollen Signalverlauf auf dem Bildschirm anzuzeigen.

Abbildung 3- 8 Anzeige Signalverlauf

Beispiel 8: FFT Cursormessung

FFT Messungen beinhalten: Amplitudenmessung (Vrms oder dBVrms) und Frequenzmessungen (Hz).

Folgen Sie diesen Schritten:

- 1. Drücken Sie Cursor→Manuell.
- 2. Drücken Sie Typ um X oder Y auszuwählen.
- 3. Drücken Sie Quelle um FFT auszuwählen.
- 4. Drehen Sie den Mulifunktionsknopf (♥) um den Cursor zu einem interessanten Punkt zu bewegen.

Abbildung 3-9 Beispiel einer Cursormessung einer FFT Amplitude

Abbildung 3-10 Beispiel einer Cursormessung einer FFT Frequenz

Beispiel 9: Pass/Fail-Test

Wenn die Testfunktion ausgeführt wird, prüft das Oszilloskop automatisch das Eingangssignal, verglichen zu der schon gespeicherten Signalverlaufsmaske. "Berührt" der Signalverlauf die Maske, erscheint ein "Fail", andernfalls wird der Test bestanden. Bei Bedarf, kann ein programmierbarer Ausgang für externe Regelungsaufgaben verwendet werden. Wie z.B. eine automatische Aussonderung von Defektprodukten in einer Produktionslinie. Der Ausgang ist ein Standardmerkmal, und optisch isoliert.

Führen Sie folgende Schritte aus:

- 1. Drücken Sie Utility → Pass/Fail.
- 2. Drücken Sie Test aktivieren und wählen Sie An aus.
- 3. Drücken Sie Mask Setting→Laden.
- Drücken Sie Laden um die gespeicherte Maske aufzurufen oder drücken Sie X Maske und Y Maske um die Horizontal- und Vertikalgrenze einzustellen, danach drücken Sie Create Mask um eine neue Maske zu erstellen.
- 5. Drücken Sie Ausgang um den voraussichtlichen Ausgangssignalverlauf auszuwählen.
- 6. Drücken Sie Anwenden um den Test zu starten.

Abbildung 3- 11 Anzeige Signalverlauf

© 2008 RIGOL Technologies, Inc.

Benutzerhandbuch für DS1000E, DS1000D Serie

Beispiel 10: Triggerung auf ein Digitalsignal

Speziell bei **Digitalsignalen** wird die Muster- und Dauertriggerung verwendet, um fortzufahren wenn das Trigger System benutzt wurde.

Die zwei Trigger Arten sind nur für Digitalsignale zulässig.

Muster

Führen Sie folgende Schritte aus:

- 1. Drücken Sie die MENU Taste im Triggereinstellbereich um das Trigger Menü zu öffnen.
- 2. Drücken Sie Modus um Muster Modus auszuwählen.
- 3. Drehen Sie den Multifunktionsknopf (♥) um den von Ihnen gewünschten Kanal auszuwählen.
- 4. Drücken Sie Code um die Codeeinstellung auszuwählen (H, L, X, 五, oder 1)
- 5. Drücken Sie Ablenkung um den Trigger Modus auszuwählen: Auto, Normal, oder Single.
- 6. Drücken Sie Set Up um die Sperrzeit einzustellen.

Abbildung 3- 12 Pattern Trigger auf Digitalsignal

```
© 2008 RIGOL Technologies, Inc.
Benutzerhandbuch für DS1000E, DS1000D Serie
```

Dauer

Führen Sie folgende Schritte aus:

- 1. Drücken Sie die MENU Taste im Triggereinstellbereich um das Trigger Menü zu öffnen.
- 2. Drücken Sie Modus um den Dauermodus auszuwählen.
- 3. Drehen Sie den Multifunktionsknopf (\checkmark) um den gewünschten Kanal auszuwählen.
- 4. Drücken Sie Code um die Codeeinstellungen auszuwählen (H, L, or X).
- 5. Drücken Sie Qualifier um die Zeitgrenzen einzustellen.
- 6. Drücken Sie Zeit um die Dauer und Limitsymbolzeit einzustellen.
- 7. Drücken Sie Zeitablenkung um den Trigger Modus auszuwählen: Auto, Normal, oder Single
- 8. Drücken Sie Set Up um die Sperrzeit einzustellen.

Abbildung 3-13 Dauertrigger auf Digitalsignal

Figure 3-14 Dauertrigger auf Digitalsignal

Kapitel 4 Fehlerbehebung

1. Nach dem Anschalten des Oszilloskops, bleibt der Bildschirm schwarz (keine Anzeige):

- (1) Prüfen Sie die Netzanschlussleitung.
- (2) Prüfen Sie ob der Einschalter eingeschaltet ist.
- (3) Nach den oberen Inspektionen starten Sie das Oszilloskop neu.
- (4) Sollte das Problem weiter bestehen, kontaktieren Sie bitte für weitere Hilfe **RIGOL**.

2. Nach der Signalerfassung erscheint kein Signalverlauf:

- (1) Prüfen Sie ob die Tastköpfe korrekt mit dem Signal verbunden sind.
- (2) Prüfen Sie ob die Tastköpfe fest mit den Kanälen verbunden sind.
- (3) Prüfen Sie ob die Tastköpfe mit dem zu testenden Objekt korrekt verbunden sind.
- (4) Prüfen Sie ob die Schaltung ein Signal an diesem Testpunkt generieren kann (Verbinden Sie den Tastkopfanschluss an einen anderen Eingangskanal um herauszufinden ob der Testpunkt kein Signal produziert oder der Eingangskanal das Problem ist).
- (5) Wiederholen Sie die Erfassung.
- 3. Das Messergebnis ist 10-mal größer oder kleiner als der Erwartungswert.

Prüfen Sie ob die Tastkopfkompensation gleich wie die Kanalkompensation eingestellt ist.

4. Sollte das Oszilloskop keine stabile Signalverlaufsanzeige erreichen:

- (1) Prüfen Sie die **Trigger Source** und beachten Sie, ob hier der benutzte Kanal eingestellt wurde.
- (2) Prüfen Sie den **Trigger Type**. Benutzen Sie "Flanke" für normale Signale und "Video" für Videosignale.
- (3) Stellen Sie die Kopplung auf HF Rejection oder LF Rejection um das Rauschen zu filtern, welches den Trigger stört.
- (4) Passen Sie die Trigger **Sensitivity** und die **Sperrzeit** an.

5. Nach dem Drücken der RUN/STOP Taste zeigt das Oszilloskop keinen Signalverlauf auf dem Bildschirm an.

Prüfen Sie ob der **Trigger Modus** auf "Normal" oder "Single" gestellt ist und sehen Sie nach ob der Trigger Level außerhalb des Messbereiches ist. Sollte dies der Fall sein, stellen Sie den Trigger Level auf den passenden Bereich mit Drehen des ⁽³⁾LEVEL Knopfes oder mit drücken der 50% Taste. Auch können Sie den Trigger Modus auf "AUTO" stellen. Zudem, drücken Sie die AUTO Taste um den Signalverlauf auf dem Bildschirm darzustellen.

6. Nach dem die Erfassung auf Durchschnitt oder Persistenz Anzeige gestellt wurde, wird der Signalverlauf nur noch langsam aktualisiert. Dies ist normal für diese Einstellungen.

7. Das Signal wird als leiterartiger Signalverlauf angezeigt.

- (1) Die Zeitbasis ist zu niedrig eingestellt. Drehen Sie den horizontal ⁽²⁾SCALE Knopf um die Horizontalauflösung zu vergrößern und so die Anzeige zu verbessern.
- (2) Vielleicht ist der Anzeigetyp auf "Vektoren" gestellt, ändern Sie diesen auf "Punkte" um die Anzeige zu verbessern.

Kapitel 5 Technische Daten

Alle Spezifikationen treffen auf die Oszilloskope der DS1000E, DS1000D Serie zu, sofern nicht anders angegeben. Um diesen Spezifikationen zu entsprechen, müssen zwei Bedingungen erfüllt werden:

- Das Instrument muss kontinuierlich 30 Minuten unter der spezifizierten Betriebstemperatur betrieben worden sein.
- Führen Sie eine Selbstkalibrierung mit dem Utility Menüs durch, sollte die Betriebstempertur um 5°C oder mehr abweichen.

Hinweis: Alle Spezifikationen werden garantiert, außer diese sind mit "charakteristisch" gekennzeichnet.

Technische Daten

Erfassung				
Erfassungsmodus	Echtzeitabtastung synchronisierte Abtastung			
Abtastrate	1000000/c	DS1102X	DS1052X	
	105d/S , 500M5d/S	25GSa/s	10GSa/s	
Durchschnitte	Der Signalverlauf wird einmal angezeigt, solange alle Kan			
	N mal durchlaufen wurden. Abtastwert, N kann gewählt			
werden von 2, 4, 8, 16, 32, 64, 128 und 256.				

Eingänge	
Eingangskopplung	DC, AC, GND
Eingangsimpedanz	1MΩ±2%
	Die Eingangskapazität ist 18pF±3pF
Tastkopfkompensationsfaktoren	1X, 5X, 10X, 50X, 100X, 500X,1000X
Maximala Fingangaanannung	400V (DC+AC Spitze, 1M Ω Eingangsimpedanz)
Maximale Eingangsspannung	40V (DC+AC Spitze) ^[2]
Zeitverschiebung zwischen den	500ps
Kanälen (charakteristisch)	

Horizontal					
Bereich der Abtastrate	Echtzeit: 13.65Sa/s-1GSa/s				
	Synchron: 13.65	5Sa/s-25GSa/	S		
Signalverlaufsinterpolation	Sin(x)/x	Sin(x)/x			
	Kanalmodus	Abtastrate	Speicher-	Speicher-	
			Tiefe	Tiefe	
			(normal)	(lange	
				Aufnahme)	
	Einzelkanal	1GSa/s	16kpts	k.A.	
Speichertiefe	Einzelkanal	500MSa/s	16kpts	1Mpts	
		oder			
		weniger			
	Doppelkanal	500MSa/s	8kpts	k.A.	
		oder			
		weniger			

5-2

				RIGOL	
	Doppelkanal	250MSa/s	8kpts	512kpts	
		oder			
		weniger			
Bereich	2ns/div~50s/div	, DS1102X			
Abtastgeschwindigkeit	5ns/div~50s/div	5ns/div~50s/div, DS1052X			
(Sec/div)	1-2-5 Sequenz				
Abtastraten- und					
Zeitverzögerungs-	±50ppm (beliebiger Intervall ≥1ms)				
Genauigkeit					
Delta Zeit	Einzelauslösung	: ±(1 Abt	astzeit +	50ppm ×	
Messgenauigkeit	Anzeigewert + ().6 ns)			
(volle Bandbreite)	>16 Durchschr	nitte: ±(1 A	btastzeit +	50ppm ×	
	Anzeigewert + ().4 ns)			

Vertikal				
A/D Wandler	8-bit Auflösung, alle Kanäle werden geleichzeitig			
	abgetastet			
Volts/div Bereich	2mV/div~10V/div bei BNC Eingang			
Maximale	Maximale Eingangsspannung am Analogkanal			
Eingangsspannung	CAT I 300Vrms, 1000Vpk; momentane Überspannung			
	1000Vpk			
	CAT II 100Vrms, 1000Vpk			
	RP2200 10:1: CAT II 300Vrms			
	RP3200 10:1: CAT II 300Vrms			
	RP3300 10:1: CAT II 300Vrms			
Offset Bereich	±40V (250mV/div~10V/div)			
	±2V (2mV/div~245mV/div)			
Analoge Bandbreite	100MHz (DS1102D,DS1102E)			
	50MHz (DS1052D, DS1052E)			
Bandbreite bei	100MHz (DS1102D, DS1102E)			
Einzelauslösungen	50MHz (DS1052D, DS1052E)			
Wählbare analoge				
Bandbreiten-	20MH+			
Begrenzung				
(charakteristisch)				
Niederfrequenzresona nz (AC –3dB)	≤5Hz (bei BNC Eingang)			

© 2008 RIGOL Technologies, Inc. Benutzerhandbuch für DS1000E, DS1000D Serie

Anstiegszeit an BNC,	<3.5ns, <7ns,			
(charakteristisch)	(entsprechend bei 100MHz, 50MHz)			
Dynamikbereich	±5div			
DC Verstärkungs-	2mV/div-5mV/div:			
genauigkeit	±4% (Normal- oder Durchschnittserfassungsmodus)			
	10mV/div-10V/div:			
	±3% (Normal- oder Durchschnittserfassungsmodus)			
DC Messgenauigkeit,	Durchschnitt von ≥16 Signalverläufen mit vertikaler			
Durchschnitts-	Position bei Null:			
erfassungsmodus	±(DC			
	Verstärkungsgenauigkeit×Anzeigewert+0.1div+1mV)			
	Durchschnitt von ≥16 Signalverläufen mit vertikale			
	Position nicht bei null:			
	±[DC			
	Verstärkungsgenauigkeit×(Anzeigewert+Vertikalposition)			
	+(1% der Vertikalposition) + 0.2div]			
	Plus 2mV für Einstellungen von 2mV/div bis 245 mV/div			
	Plus 50mV für Einstellungen von 250mV/div bis 10V/div			
Spannungsmessungs-	Spannung Delta zwischen zwei beliebigen Durchschnitten			
Genauigkeit Delta	von 16 Signalverläufen			
(Durchschnitts-	Erfasst unter den gleichen Einstellungen und Umgebungs-			
erfassungsmodus)	ngsmodus) Bedingungen: ±([
	Verstärkungsgenauigkeit×Anzeigewert + 0.05 div)			

Trigger				
Trigger Sensitivität	0.1div~1.0div (einstellbar)			
Triggerlevelbereich	Intern	±6 Einteilungen von Bildschirmmitte		
	EXT	±1.2V		
Triggerlevelgenauigkeit	Internal	±(0.3div × V/div)(±4 Einteilungen von		
(charakteristisch)		Bildschirmmitte)		
anwendbar für das	EXT	±(6% der Einstellung + 200 mV)		
Signal von Anstiegs-				
oder Abfallzeit ≥20ns				
	Normal Modus: Vortrigger (Speichertiefe/ 2*Abtastrate),			
Trigger Offset	verzögerter Trigger 1s			
	Langsamer	Abtastmodus: Vortrigger 6div, verzögerter		

5-4

	Trigger 6div	
Trigger Sperrbereich	500ns~1.5s	
Setze Level auf 50% (charakteristisch)	Wenn Eingangssignalfrequenz ≥50Hz	
Flankentrigger	•	
Flankentrigger Anstieg	Steigend, Fallend, Steigend + Fallend	
Pulsweitentrigger		
Triggerkondition	(>, <, =) positive Pulsweite, (>, <, =) negative Pulsweite	
Pulsweitenbereich	20ns ~10s	
Video Trigger		
Video Standard &	Unterstützung für Standard NTSC, PAL und SECAM	
Linien Frequenz	Übertragungssysteme. Liniennummernbereich: 1~525	
	(NTSC) und 1~625 (PAL/SECAM)	
Anstiegstrigger		
Triggerkondition	($>$, $<$, =) positiver Anstieg, ($>$, $<$, =) negativer Anstieg	
Zeiteinstellung	20ns~10s	
Alternierender Trigge	er	
Trigger auf CH1	Flanke, Puls, Video, Anstieg	
Trigger auf CH2	Flanke, Puls, Video, Anstieg	
Bitmuster Trigger ^[2]		
Trigger Modus	D0~D15 wähle H, L, X, ∮, 飞	
Dauertrigger ^[2]		
Triggertyp	D0~D15 wähle H, L, X	
Qualifier	>, <, =	
Zeiteinstellung	20ns~10s	

Messgungen				
	Manuell	Spannungsdifferenz zwischen den Cursoren (ΔV)		
Cursor		Zeitdifferenz zwischen den Cursoren (ΔT)		
		Kehrwert von ΔT in Hertz (1/ ΔT)		
	Track	Spannungswert für Y-Achsen Kurvenverlauf		
		Zeitwert für X-Achsen Kurvenverlauf		
	Auto	Cursoren sind für Automatik Messungen		

© 2008 RIGOL Technologies, Inc. Benutzerhandbuch für DS1000E, DS1000D Serie

	verfügbar		
Auto Measure	Vpp, Vamp, Vmax, Vmin, Vtop, Vbase, Vavg, Vrms,		
	Überschwingen, Unterschwingen, Freq, Period, Anstiegszeit,		
	Abfallzeit, +Width, -Width, +Duty, -Duty, Delay $1 \rightarrow 2f$, Delay $1 \rightarrow 2$		
	t, Phas 1→2f, Phas 1→2t		

Anmerkungen:

[1] Bei einer Abtastung von 1GSa/s, kann nur ein Kanal benutzt werden.

[2] Für DS1000D Serie

Verschiedenes

Bildschirm		
Bildschirmtyp	145 mm (5.6 inch) diagonal, TFT Liquid Crystal	
	Display	
Bildschirmauflösung	320 horizontal ×RGB×234 vertikal Pixel	
Bildschirmfarben	64k Farben	
Bildschirmkontrast	150:1	
(charakteristisch)		
Helligkeit der	300 nit	
Hintergrund-		
Beleuchtung		
(charakteristische)		

Tastkopfkompensation				
Ausgangsspannung (chrakteristisch)	Ungefähr 3Vpp (Spitze- Tal)			
Frequenz (charakteristisch)	1kHz			

Leistung				
Spannungsversorgung	100 ~ 240 VAC _{RMS} , 45~440Hz, CAT II			
Leistungsverbrauch	Weniger als 50W			
Sicherung	2A, T (Bemessung), 250 V			

Umgebung					
Umgebungstemperatur	Betrieb bei 10℃~ 40℃				
5-6	·	© 2008 RIGOL Technologies, Inc.			

Benutzerhandbuch für DS1000E, DS1000D Serie

	Kein Betrieb bei -20℃~ +60℃	
Kühlungsart	Lüfter	
Luftfeuchtigkeit	unter +35°C: ≤90% relative Luftfeuchtigkeit	
	+35℃~ +40℃:	
	≤60% relative Luftfeuchtigkeit	
Höhe über Normal Null	Betrieb bei 3,000 m oder darunter	
	Kein Betrieb 15,000 m oder darunter	

Mechanisch			
Größe	Breite	303mm	
	Höhe	154mm	
	Tiefe	133 mm	
Gewicht	Ohne Verpackung	2.3 kg	
	Eingepackt	3.5 kg	

IP Schutzart

IP2X

Kalibrierungsintervall

Der empfohlene Kalibierungsintervall ist einmal im Jahr.

Kapitel 6 Anhang

Anhang A: Zubehör

Standardzubehör:

• 2x Tastköpfe (1.5m), (1:1 oder 10:1 einstellbar) Passive Tastköpfe

Die passiven Tastköpfe haben eine Bandbreite in Stellung 1X von 6MHz und sind für eine Spannung von 150V CAT II ausgelegt. Volle Oszilloskop Bandbreite wird in der Stellung 10X erreicht, hier sind die Tastköpfe für eine Spannung von 300V CAT II ausgelegt.

- Ein Standardnetzkabel mit länderspezifischem Stecker. (Schutzkontaktstecker)
- Ein Datenkabel (Nur für DS1000D Serie)
- Ein Logiktastkopf (nur DS1000D Serie)
- 20 Logikprüfspitzen (nur DS1000D Serie)
- 20 Logikmessleitungen (nur DS1000D Serie)
- Eine CD-ROM (inklusive Benutzerhandbuch und Anwendersoftware)
- Benutzerhandbuch

Optionales Zubehör:

- USB-Kabel
- BNC-Kabel
- RS232-Kabel
- USB-GPIB Adapter
- hochwertige Oszilloskop Tasche für DS1000D und DS1000E

Der Standard-/optional Zubehör kann bei Ihrem lokalen **RIGOL** Vetriebspartner erworben werden.

Anhang B: Gewährleistung

RIGOL garantiert bei Ihren Geräten und Zubehör für die verwendeten Materialien und Verarbeitung in der Gewährleistungszeit.

Während des Gewährleistungszeitraums garantiert **RIGOL** den kostenlosen Ersatz oder Reparatur defekter Geräte.

Um den Reparaturservice in Anspruch zu nehmen oder die ganze Garantieerklärung zu erhalten, kontaktieren Sie bitte Ihren nächsten **Rigol** Vertreter, Vertriebshändler.

RIGOL bietet keine andere Garantie, außer die in diesem Dokument und in der Garantieerklärung genannten. **RIGOL** übernimmt keine Haftung für indirekte, beiläufige Schäden und Folgeschäden.

Appendix C: Pflege und Reinigung

Lagerung

Lagern und stellen Sie das Gerät nicht an einen Ort, an dem es über einen längeren Zeitraum direkter Sonneneinstrahlung ausgesetzt wird.

Achtung

Um Schäden am Gerät oder den Tastköpfen zu verhindern, setzen Sie diese nicht ätzenden Flüssigkeiten aus.

Reinigung

Reinigen Sie das Gerät und die Tastköpfe regelmäßig, basierend auf den geforderten Arbeitsbedingungen. Um das Gehäuse zu reinigen, gehen Sie wie folgt vor:

- **1.** Trennen Sie das Gerät von allen Stromquellen.
- 2. Reinigen Sie das Gerät und Tastköpfe von Staub mit einem Flusen freien Lappen (mit einem milden Reinigungsmittle und Wasser). Beim Reinigen des LCDs, passen Sie auf, um Kratzer zu vermeiden.

WARNUNG: Um Verletzungen durch Kurzschlüsse zu vermeiden, sorgen Sie dafür, dass das Gerät vor dem Anschließen an die Stromquelle völlig trocken ist.

Anhang D: Kontakt RIGOL

Bei auftretenden Problemen oder Anforderungen während der Verwendung unserer Geräte, bitte kontaktieren Sie **RIGOL** Technologies EU oder Inc. bzw. einen lokalen Vertriebspartner.

In Europa. Bitte kontaktieren Sie: Tel: +49(0)89-8941895-0 Fax: +49(0)89-8941895-10

Service & Support: Montag bis Freitag von 09:00 – 17:00 Uhr

Kontakt per E-Mail: Support-europe@rigoltech.com

Kontakt per Post: **RIGOL** Technologies EU GmbH Lindberghstr. 4 D-82178 Puchheim

Außerhalb Europa: Kontaktieren Sie ihren lokalen **RIGOL** Vertriebs Händler oder **RIGOL** Technologies, Inc..

Um die neusten Produktinformationen und Service zu erhalten, besuchen Sie unsere Website: <u>www.rigol.com</u>.
Stichwortverzeichnis

50%1-21, 2-39
AC Kopplung 2-3
Alternierender Trigger2-48
Anhang6-1, 6-4
Anstiegstrigger2-44
Anzeigesystem2-67
AUTO2-116, 2-117
Auto Trigger2-59
Automatische Messung2-99
Bandbreitenbegrenzung 2-6
Bildschirm 5-6
Bitmustertrigger2-53
Blackman Fenster2-16
Cursor2-107
Cursor Messung 2-107, 3-6
Dauertrigger2-55
DC Kopplung 2-4
Durchschnittserfassung2-66
E/A Einstellungen2-79
Echtzeitabtastung2-66
Eingänge 5-2
Einzeltrigger2-60
Enveloppe2-66
Erfassung 5-2
Erfassungskontrolle 2-116
Erfassungsmodus2-62
Ext und Ext/52-59
FFT2-14
Flanken Trigger2-41
FORCE 1-21, 2-39
Frontabdeckung 1-3
Funktionsprüfung 1-9
GND Kopplung 2-4
Grob/ Fein 1-17, 2-11
© 2008 RIGOL Technologies, Inc.

Hamming Fenster	2-16
Hanning Fenster	2-16
HF UNterdrückung	2-60
Horizontal	5-2
Invertiere Signal	2-12
Kanalkopplung	2-3
Leistung	5-7
LEVEL	2-39
LF Unterdrückung	2-60
Math. Funktion	2-13
Messungen	5-5
Netzspannung	2-59
Normal Trigger	2-60
Nyquistfrequenz	2-16
Optional	6-1
Pulstrigger	2-42
Rechteckfenster	2-15
REF	2-17
Reinigung	6-3
Roll Modus Anzeige	2-34
RUN/STOP	2-116
Selbstkalibierung	2-95
Speichern und Wiederaufrufen.	2-69
Sprache	2-80
STORAGE	2-69
Sync Puls	2-47
Synchrone Abtastung	2-66
Tastkopfkompensation	2-7
Tastkopfkompensator	5-6
Tastkopfkompensierung	1-12
Trigger	5-4
Trigger Einstellung	1-20
Triggersystem	2-39
UTILITY	2-77
	1

Benutzerhandbuch für DS1000E, DS1000D Serie

RIGOL

Vertikal5-3	Weißes Rauschen 3-4
Vertikaleinstellungen 1-16	Werkseinstellungen 2-76
Vertikalsystem2-2	X-Y 2-34
Video Trigger 2-45	Y-T 2-34
Vortrigger 2-60	Zubehör 6-1, 6-2